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Lecture notes
This is a typed-out and slightly expanded version of my notes that I made whilst preparing the
presentation of my thesis [Sar17] which took place on Aug 23, 2017 at KTH. The two main sources
of inspiration for the exposition are Szamuely’s book [Sza09] which covers Galois theory, covering
theory and the étale fundamental group - although without Galois categories - and a lecture at
the conference "Motives, algebraic geometry and topology under the white-blue sky" in Munich
on July 6, 2017 where Alexander Schmidt presented the paper "Anabelian geometry with étale
homotopy types", [SS16].

The presentation is going to proceed in the following manner: first we are going to give two
classical examples to illustrate the concept of a Galois category, which we are defining in section 3.
In the section following that, we explain how this formalismgives the étale fundamental group of a
scheme. After that, we will discuss a series of advanced results that uses this group, and describe
some conjectures that are central for researchers in this area. Then, after a small but necessary
technical interlude, we will present some recent results of a slightly more general nature.

1. Galois theory
Let k be a field. A finite dimensional k-algebra A is étale if it is isomorphic to a finite product of
separable extensions Ki of k,

A ∼=
n

∏
i=1

Ki.

Given a separable closure ks of k, the absolute Galois group Gal(ks|k) acts on the finite set
homk(A, ks). Sending finite étale algebras A to finite sets with a Gal(k)-action hom(A, ks) is a
contravariant functor

(finite étale k-algebras)op (finite left Gal(k)-sets)

A homk(A, ks)

F

and we have a theorem:

Theorem 1.1 (Main theorem of Galois theory). For k a field, F defines an anti-equivalence of categories,

(finite étale k-algebras) ' (finite continuous left Gal(k)-sets).

Remark 1.2. Some things that we can note:

• The absolute Galois group Gal(ks|k) implies a choice of separable closure ks.

• ks is not a finite étale algebra, but it is a limit of finite étale algebras. In fact, it is the union of
all finite separable extensions of k. Similarly Gal(ks|k) is not a finite group, but it is a limit of
the finite groups Gal(L|k) for all intermediate finite Galois extensions L of k in ks.
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• Aut F ∼= Gal(ks|k). We will explain why this is interesting.

We also have some general theorems showing that we can classify certain classes of fields by
their absolute Galois groups. These are "anabelian" results predating the word anabelian!

Theorem 1.3 (Neukirch 1969). Let K, L be algebraic number fields. If Gal(K) ∼= Gal(L) then K ∼= L.

Theorem 1.4 (Uchida 1973). For K an algebraic number field, the outer isomorphisms of the Galois group
corresponds to the automorphisms of the field: Aut(K) ∼= Out(Gal(K)).

2. Covering theory
Let X ∈ Top be a "nice" (i.e. connected, locally connected and locally simply connected) space.

A covering of the space X is a pair f : Y → X of a space Y and a continuous function f such
that f is a local homeomorphism, admitting a cover of open sets such that the preimage of such
an open set U consists of disjoint open sets mapped homeomorphically to U. Thus the fibre of a
covering map is a discrete set.

Given a coverY of X, the fundamental group π1(X, x) acts on the fibre p –1(x) by themonodromy
action, which is defined in the followingway: we begin by choosing an element α ∈ π1(X, x)which
is represented by a loop γ : I → X. By choosing a start point y above x, we get a lifting γ̃ : I → Y.
In general this will not be a loop but a path from y to another point in the fibre over x, and this
defines a permutation of the fibre, hence a group action. Taking a covering p : Y → X to the set
p –1(x) is a functor Fibx

(covers of X) (continuous left π1(X, x)-sets)

(p : Y → X) p –1(x)

Fibx

The following theorem is remarkable because it resembles Galois theory:

Theorem 2.1 (Main theorem of covering theory). For a connected, locally connected and locally simply
connected topological space X with base point x, the fibre functor Fibx sending a covering p to the fibre
p –1(x) is an equivalence of categories

(coverings of X) ' (left π1(X, x)-sets).

Here connected coverings give setswith transitive action andGalois coverings give coset spaces
of normal subgroups. If we restrict ourselves to finite covers, i.e. where the fibres are finite sets, we
get another equivalence of categories

(finite coverings of X) ' (continuous left ̂π1(X, x)-sets)

where the latter notation denotes the profinite completion of π1(X, x), which is obtained as a limit
over the system of fundamental group all finite covers — just like the absolute Galois group!

Remark 2.2. A nice space X with base point x has a universal covering space, whose defining
property is that the cover X̃x → X factors through all other coversY → X and thus that π1(X, x) ∼=
Aut(X̃x). One can verify that the fibre functor Fibx is represented by the universal covering space,
so that Fibx(Y) = homX(X̃x, Y). In general, the universal covering is not a finite cover, but it can
be described as a limit of all finite connected covers.
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3. Grothendieck’s Galois theory
We have now seen two examples of classical subjects with a central theorem stating the equiva-
lence of certain interesting objects (algebras, coverings) correspond to sets with a group action.
Grothendieck developed a beautiful common generalisation in SGA 1, V.5.1, where he defines a
Galois category.

Definition 3.1. A Galois category is a category C which is equivalent to the category of finite con-
tinuous left G-sets for some profinite group G,

C ' G-sets.

where G is referred to as the fundamental group of C.
An equivalent formulation is that we have a functor F : C → Set called the fibre functor such

that G = Aut F and which lifts to an equivalence C ' G-sets as

C Set

G-sets.

F

' U

Proposition 3.2 (Stacks project 0BMQ). (C, F) being a Galois category is equivalent to the following
conditions.

1. C is finitely cocomplete and complete.

2. Every X ∈ C is a coproduct of connected objects.

3. Every FX is a finite set.

4. F is exact and conservative.

Here finitely complete and cocomplete means having all finite limits and colimits, and F being
exact means that it preserves all finite limits and colimits. A connected object Y is one for which
having a monomorphism Z → Y implies that Z is initial or that Z ∼= Y.

4. For schemes
We have now arrived at what could be seen as the main topic of this talk, which is to discuss a
very important example of a Galois category.

Let X be a connected scheme, and let FEtX be the category of all schemes Y with a fixed finite
étale map p : Y → X. If we let x : Ω → X be a geometric point we have the fibre p –1(x) as the
underlying finite set of the pullback

p –1(x) Y

Ω X.

p

x

This defines a functor Fibx taking a finite étale cover Y to the finite set p –1(x). One can show
that it satisfies conditions 1-4 of 3.2 and thus qualifies as a fibre functor making FEtX a Galois
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category:

FEtX (continuous left G-sets)

(p : Y → X) p –1(x)

Fibx

Definition 4.1. The étale fundamental group is the group πét
1 (X, x) = G = Aut(Fibx).

Examples 4.2. Two interesting examples:

• Finite étale covers of the spectrum of a field correspond to finite étale algebras. With X =

Spec k and x : Spec k → X we have πét
1 (X, x) = Gal(k|k). Here the choice of closure k is a

choice of base point. We recover classical Galois theory in a geometric way!

• X finite type over C: we have an anlytical topology and

̂
π
top
1 (Xan, x) ∼= πét

1 (X, x).

This means that we already know many étale fundamental groups. For instance

πét
1 (A1

C − 0) = Ẑ.

Remark 4.3. Let us compare with the remarks from the first two sections. In general, there is no
possibility to define a universal finite étale cover for a scheme. However, we can construct a system
of finite étale covers (Xα → X)which is a pro-representing system for the étale fundamental group,
meaning that

lim
α

hom(Xα, Y) ∼= Fibx(Y).

Since every Xα is a finite étale cover with a finite automorphism group, this implies that the au-
tomorphism group of the functor is obtained as a limit of this system of finite groups. This is
the (Galois category-free) approach used by [Sza09] to show that the étale fundamental group is
profinite.

5. Short homotopy exact sequence
Just as in topology, maps between schemes and changes of base point induce homomorphisms of
fundamental groups. One of the most important examples is the following. For X a scheme over
a field k, we have natural maps Xk → X → Spec k.

Theorem 5.1 (Short homotopy exact sequence). For X geometrically connected, quasiseparated and
quasicompact, we have a short exact sequence

1 π1(Xk, x) π1(X, x) Gal(k) 1.

The group π1(Xk) is called the geometric fundamental group of X. Constructing the inner and
outer automorphism groups we get

1 π1(Xk, x) π1(X, x) Gal(k|k) 1

1 Inn(π1(Xk, x)) Aut(π1(Xk, x)) Out(π1(Xk, x)) 1
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which defines a natural continuous map

ρX : Gal(k|k)→ Out(π1(Xk)) = Aut(π1(Xk))/Inn((π1(Xk))

called the outer Galois representation, which is very important in number theory. For instance, if
k = Q, it gives information about Gal(Q|Q) which is very desirable for a number theoretician.

6. Anabelian geometry
In 1983 Grothendieck wrote a letter to Faltings. The letter was concerned with so-called anabelian
(German: anabelsch) schemes over a field k that is a finitely generated extension of Q. Although he
does not give a definition of what an anabelian scheme X is, Grothendieck claims that they exist
and that that they should be reconstructible from their étale fundamental group π1(X). Hemakes
three conjectures.

Conjectures 6.1. The three conjectures are as follows:

1. If C is a smooth hyperbolic curve (i.e. one with negative Euler characteristic) then C is anabelian.

2. If X is a smooth scheme, then every point of X has a fundamental system of Zariski neighbourhoods
that are anabelian.

3. If X is anabelian the rational points X(k) (= sections of the structure map X → Spec k) are recon-
structible from the Galois sections of π1(X)→ Gk.

Here Gk is the absolute Galois group of k. The third conjecture is sometimes referred to as the
section conjecture. We will otherwise refer to them as conjecture 1, 2 and 3 and focus mainly on
conjecture 1. One fundamental issue in interpreting these conjectures, is to say what the word
reconstructible means. Here are three possible meanings for X, Y smooth:

• ("weak") If π1(X) ∼= π1(Y) then X ∼=k Y.

• ("strong") The map Isomk(Y, X)→ IsomGk
(π1(Y), π1(X))/π1(Xk) is an isomorphism.

• ("Yoneda") For every Y the map Homdom
k (Y, X) → Homopen

Gk
(π1(Y), π1(X))/π1(Xk) is an

isomorphism.

Tamagawa showed conjecture 1 with the "strong" condition for affine curves, and Mochizuki
subsequently improved on that result. Mochizuki also showed conjecture 1 for a larger class of
curves for the "Yoneda" condition. See [Tam97] and [Moc99].

Here we will discuss a proof of conjecture 1 with the "weak" condition generalised for a large
class of higher dimensional schemes. To do this, we need to make a small detour to introduce
some machinery. We will not discuss conjecture 2, but we can note that a version thereof is also
proven in [SS16].

7. Technical interlude
Observation: it is not very plausible to have reconstruction from the fundamental group π1 unless
the scheme is of type K(π, 1), so it makes more sense to ask a modified question. It is natural to
instead look at the étale homotopy type Xet ∈ Ho(pro-ss).

Recall that for any category C the pro-category pro-C is defined with

• Objects: functors X : Iop → C where I is small and filtering.
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• Morphisms: Hompro-C((Xi), (Yj)) = limi colimj HomC(Xi, Yj).

Example 7.1. The category of profinite groups can be viewed as the pro-category of finite groups.

Example 7.2. For the category of simplicial sets ss (= spaces) has a pro-category pro-ss and there
is a pointed category pro-ss∗. For a pro-space X = (Xi) ∈ pro-sswe can use the homotopy group
functors πn level-wise and obtain a pro-group πn(X) = (πn(Xi)).

The category of pro-spaces has a model structure, defined by Isaksen in [Isa01]. It is defined
by

• Cofibrations: (isomorphic to) level-wise cofibrations.

• Weak equivalences: "isomorphisms on homotopy groups".

This latter statement is formalised with the notion of local systems, and the class of fibrations is
obtained by the model category requirements from the other two classes.

Remark 7.3. (from [Sch17]) "Pro-spaces are beasts":

• They do not always have points. A point is a morphism ∗ → X. The space Xn = ([n, ∞))

has no points, as any image of a constant function will be outside the interval [n, ∞) for large
enough n.

• The homotopy groups πn(X, x)may depend on the basepoint x ∈ X even if X is connected.
Thus questions of the type "unpointed versus pointed" are subtle in Ho(pro-ss)! These prob-
lems are treated in section A.2.2 of [SS16].

7.a. Étale homotopy
The étale homotopy type was defined by Artin-Mazur in [AM86] and improved by Friedlander in
[Fri82]. For a locally Noetherian scheme X, the étale homotopy type is an object Xet in pro-ss defined
as taking all rigid hypercovers of X and then taking the connected components of these.

Remark 7.4. Some properties that hold and can be found in [AM86].

1. H∗(Xet,−) ∼= H∗et(X,−).
2. π1(Xet, xet) is the enlarged fundamental group of SGA3.

3. If X is normal (or geometrically unibranch), then πn(Xet) is profinite for all n ≥ 0.

As a consequence of (2) and (3), it holds that π1(Xet)
∼= πet

1 (X) for normal schemes, which means
that the étale homotopy type is a true generalisation of the étale fundamental group.

8. Schmidt and Stix 2016
Henceforth, let all schemes be normal (or geometrically unibranch). For X, Y over k we again
consider the natural map

φY,X : Isomk(Y, X)→ IsomHo(pro-ss∗)/ket(Yet, Xet).

Hyperbolic curves are of type K(π, 1). The first main result of the paper [SS16] is the following,
which is a translation of Mochizuki’s result into the language of étale homotopy.

In the statements below, let k denote a finitely generated extension of Q.
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Theorem 8.1 (3.2 of [SS16]). For X, Y hyperbolic curves over k, the map φY,X is a bijection.

A further generalisation is the following, which does not give a bijection, but at least a split
injection (with a functorial retraction).

Theorem 8.2 (4.7 of [SS16]). Assume that X, Y are geometrically connected over k and that they can be
embedded as locally closed subschemes into a product of hyperbolic curves. Then φY,X is a split injection.

This has a weakly anabelian result as a direct corollary:

Corollary 8.3 (1.3 of [SS16]). For X, Y as in theorem 8.2, if Xet
∼=ket Yet, then X ∼=k Y.

Remark 8.4. Schmidt shows in [Sch12] that under certain conditions, the étale homotopy type
functor factors through the Morel–Voevodsky A

1-homotopy type. In particular, this means that it
would be impossible to extract more information from the étale homotopy type of a scheme than
what is contained in the A

1-homotopy type. Furthermore, anabelian schemes would have to be
A

1-local, which indeed is the case for hyperbolic curves. Hence, it could be seen as more natural
to ask the more general "motivic anabelian" question: which schemes are reconstructible from the
A

1-homotopy type? #
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