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Abstract

First introduced by Bruno Buchberger in 1965, Gröbner bases have now
become a standard tool in computational algebra. Gröbner bases are
used in a diverse spectrum of applications, ranging from tasks such as
solving systems of equations, to applications where their properties are
used as a stepping stone for further abstract algorithms.

In this paper we collect some now classical results and some recent
developments in a way that may be used as an introduction to this rich
subject for readers with some background in basic algebra. We provide
examples of the classical methods of equation solving and examples of
using Gröbner theory to calculate other interesting algebraic objects.



Notation and symbols

symbol meaning

□ end of proof
△ end of example
N {0, 1, 2, . . .}
⊴ ideal in
(f1, . . . , fs) ideal generated by {f1, . . . , fs}
⟨f1, . . . , fs⟩ submodule generated by {f1, . . . , fs}
A the polynomial ring in n variables over a field k
An the free module A× · · · ×A of dimension n
Tn the set of power products in A
< lesser than, term order
f

g−→ h polynomial reduction of f to h by g
f

G−→+ h polynomial reduction of f to h by G in multiple steps
≤ lesser than or equal to, submodule of
≺ induced term order
∼= isomorphic to
im image
ker kernel
⊕ direct sum
⊗ tensor product
Hom(M,N) the set of A-module homomorphisms from M to N
Extn(M,N) the extension group at position n between M and N
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1. Introduction

Since its inception, the meaning of the word algebra has shifted somewhat. Originally refering to
the art of solving equations, the term now encompasses a more general notion - modern algebra
is the study of general worlds and objects that we can formulate equations in. The concepts of
numbers and equations have been generalized by definitions such as rings, polynomials and vector
spaces. For a more lucid and complete account of the development of algebra, we refer to the first
chapter of [Pin10], aptly titled “Why abstract algebra?”.

The aim of this paper is to present the foundations of Gröbner bases, a computational tool for
solving systems of equations, in the setting of a polynomial ring over a field.

We begin section 2.1 by recalling some elementary concepts from abstract algebra, and in 2.2
we proceed by presenting some further concepts from commutative algebra that are necessary.
Concluding the first section, we discuss some implications from the area of algebraic geometry in
2.3.

The third section covers the fundamentals of Gröbner theory. In 3.1 we introduce some technical
definitions needed for the definition of Gröbner bases in 3.2. We then proceed by presenting
a constructive algorithm for finding Gröbner bases known as Buchbergers algorithm in 3.3. In
3.4 and 3.5 we discuss some further properties and show examples of Gröbner bases, including a
construction of a Gröbner basis for the elementary symmetric polynomials.

In the next section we cover the basic theory of modules and a natural generalization of Gröbner
bases to modules over a polynomial ring in 4.1 and 4.2. In 4.3 we discuss syzygies as a way to
describe linear dependence of a set of generators. In 4.4 we briefly cover free resolutions and how
syzygies can be used to show classical results regarding them. In the concluding sections 4.4 to 4.7
we present methods for explicit calculations of algebraic objects such as Hom and Ext.
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2. Preliminaries

2.1. Some basic algebraic concepts, definitions and examples

We will, for most parts, assume some familiarity with basic concepts of mathematics, but for clarity
and completeness we will include some basic definitions and examples. The definitions of 2.1 will
be familiar to any student of an introductury course in algebra. Further concepts that may be
new to such a reader will be presented in 2.2. For a more exhaustive account of these objects, we
recommend the book Abstract Algebra by Dummit and Foote, [DF04].

Definition 2.1. A group is a set G with a binary operation ⋆ defined on its elements, that satisfy
the following:

• Closure: for all a, b ∈ G, a ⋆ b ∈ G.

• Associativity: for all a, b, c ∈ G, (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c).

• Identity element: there exists an element e ∈ G such that a ⋆ e = e ⋆ a = a for all a ∈ G.

• Inverse: for all a ∈ G, exists an element a−1 such that a ⋆ a−1 = a−1 ⋆ a = e.

Remark. One often writes the group as (G, ⋆) to emphasize the operation in question. If the context
makes it obvious, the operation is often omitted and written as a ⋆ b = ab.

Examples 2.2. The set of integers Z = {0, 1,−1, 2,−2, . . .} is a group with the operation of addition.
Similarly the rational numbers Q, the real numbers R and the complex numbers C are groups under
addition. The natural numbers N = {0, 1, 2, . . .} with + do not however form a group since it lacks
inverse elements. Z[x], the polynomials with integer coefficients in one indeterminate x is a group
under addition. △

Definition 2.3. A group G is said to be abelian (or commutative) if for any two a, b ∈ G, ab = ba.

Definition 2.4. A ring is a set R with two binary operations + and ⋆ defined on its elements,
that satisfy the following:

• (R,+) is an abelian group.

• Closure: for all a, b ∈ R, a ⋆ b ∈ R.

• Associativity: for all a, b, c ∈ R, (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c).

• Identity element: there exists an element 1 ∈ R such that a ⋆ e = e ⋆ a = a for all a ∈ R.

• Distributivity: for all a, b, c ∈ R, a ⋆ (b+ c) = a ⋆ b+ a ⋆ c and (a+ b) ⋆ c = a ⋆ c+ b ⋆ c.

Remark. The second operation above is often refered to as multiplication and written with a · b
or ab. The existence of a multiplicative identity element is often referred to as unitality. Some
authors choose not to include this in the base definition of a ring.

Examples 2.5. The set of integers Z = {0, 1,−1, 2,−2...} is a ring with the operations being addition
and multiplication. The same holds for Q,R and C.

Z[x], the set of polynomials with integer coefficients in one variable, is a ring. The same holds for
polynomials in two or any number n variables, Z[x, y] resp. Z[x1, ..., xn]. △
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Definition 2.6. A ring R is said to be commutative if the multiplication is commutative, i.e. for
any two a, b ∈ R, ab = ba.

We now make precise the construction Z[x] in the example above.

Definition 2.7. For a commutative ring R, the polynomial ring R[x] is the set of finite sums
of the form p(x) = p0 + p1x + . . . + pnx

n for some natural number n, coefficients p0, . . . , pn ∈ R
and the indeterminate variable x. A summand in this sum is called a term.

We define addition and multiplication as for the usual polynomials in a determinate x in basic
algebra. Let q(x) = q0 + q1x+ . . .+ qmx

m and, without loss of generality, n ≥ m. We say qi = 0
for i > m and define

p(x) + q(x) = (p0 + q0) + (p1 + q1)x+ . . .+ (pn + qn)x
n, p(x)q(x) =

n+m∑
i=0

 i∑
j=0

pjqi−j

xi.

The ring of multivariate polynomials over R is defined in the same manner and is constructed as

R[x1, . . . , xn] = R[x1, . . . , xn−1][x].

Definition 2.8. A (two-sided) ideal is a subset I of a ring R such that

• Closure: I is a ring.

• Absorption: for all r ∈ R and i ∈ I, ri ∈ I and ir ∈ I.

The statement that I is an ideal of R is often written I ⊴R. The set of ring elements that can be
written on the form r1a1+ . . .+rsas for a fixed set {a1, . . . , as} ⊆ R and ring elements ri ∈ R is an
ideal of R. This is said to be the ideal generated by {a1, . . . , as} and is written as (a1, . . . , as).

Examples 2.9. The set of even integers 2Z = {0, 2,−2, 4,−4, ...} is an ideal of Z. Similarly, nZ is
an ideal for any integer n.

The set of polynomials p ∈ Z[x] that can be written p = (1 + x)q for some q ∈ Z[x] is an ideal,
written (1 + x)⊴Z[x]. △

Remark. When used in proofs in this text, we will show that a subset I is an ideal of R by first
showing closure under subtraction (taking additive inverses), that is, given x, y ∈ I the difference
x− y is also in I. Closure under multiplication by elements of R will then yield both conditions in
the definition above.

Definition 2.10. The quotient ring R/I of an ideal I in a ring R is defined by

R/I = {r + I | r ∈ R}

with well-defined addition and multiplication by (a+ I)+ (b+ I) = (a+ b)+ I and (a+ I)(b+ I) =
ab+ I.

Examples 2.11. For the ring Z and the ideal 3Z, the quotient ring is Z/3Z = {0+3Z, 1+3Z, 2+3Z} =
{0, 1, 2}, informally the integers modulo 3. Some illustrative valid statements for this ring include
1 + 2 = 0, 2 · 2 = 1 and 1 = −2.

In the quotient ring R[x]/(x2+1), we have that x2+1+(x2+1) = 0+(x2+1) and x2+(x2+1) =
x2 + 1 − 1 + (x2 + 1) = −1 + (x2 + 1). Informally, in this quotient ring, x2 + 1 is “killed”, or,
equivalently, occurrences of x2 are replaced by −1. △
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Definition 2.12. A field is a set k such that

• k is a commutative ring.

• Multiplicative inverse: for all non-zero r ∈ k there is a r−1 ∈ k such that r−1r = 1.

Examples 2.13. The set of rational numbers Q as well as the real numbers R are fields. The quotient
ring Z/3Z is a field, as any non-zero element has a multiplicative inverse: 1 ·1 = 1, 2 ·2 = 1. Indeed,
the quotient ring Z/pZ is a field for any prime number p, such as p = 57. △

Remark. In a field k, any element y can be reached from some given element x through multiplica-
tion by yx−1. From this observation we easily see that if I is an ideal of k, either I = (0) = {0} or
I = (1) = k. Furthermore, if xy = 0 for some x, y ∈ k, then either x = 0 or y = 0. That is, every
field is an integral domain.

We now define the concept of a structure preserving map between rings, essential in the study of
these objects. These are functions from the underlying set of a ring to that of another ring that
respect the operations of both rings.

Definition 2.14. A homomorphism (of rings) is a function f : R → S between two rings R,S
such that:

• Multiplicativity: for all a, b ∈ R, f(ab) = f(a)f(b).

• Additivity: for all a, b ∈ R, f(a+ b) = f(a) + f(b).

• the multiplicative identity 1R of R is mapped to the multiplicative identity 1S in S.

A ring homomorphism that is bijective is an isomorphism. If an isomorphism between R and S
exists, we say that R is isomorphic to S and write R ∼= S.

Examples 2.15. For the ring Z, the map f(n) = 2n defines a homomorphism f : Z → Z. This can
also be used, for instance, to define a homomorphism f : Z → Q.

The map between the quotient ring R[x]/(x2+1) and the complex numbers C defined by mapping
x to the imaginary unit i, or more explicitly a+ bx 7→ a+ bi is an isomorphism. Hence

R[x]/(x2 + 1) ∼= C.

△

2.2. Further definitions and some useful results

From the fundamental concepts presented in 2.1 we may now introduce some additional definitions
necessary for the machinery of Gröbner theory. First we present some key concepts of commutative
algebra and then we turn our attention towards the central objects of algebraic geometry in 2.3.

Firstly we define a property of a ring that will be essential for our foray into computational algebra.

Definition 2.16. A ring R is said to be noetherian if for every ascending chain of ideals Ii �R

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

there exists N ∈ N such that IN = IN+1 = IN+2 = · · · . That is, R is Noetherian if and only if
there are no infinite strictly ascending chains of ideals.

8
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This property can be formulated in more tangible terms for commutative rings as follows:

Theorem 2.17. A commutative ring R is Noetherian if and only if every ideal I � R is finitely
generated, i.e. any such I has a finite generating set.

Proof. Assume that R is Noetherian and that there exists an I � R that does not have a finite
generating set. Let f1 ∈ I. Then there exists f2 ∈ I such that f2 ̸∈ (f1) so that (f1) ⊊ (f1, f2).
Continuing in this fashion we obtain a strictly ascending chain of ideals, which contradicts the
Noetherianity of R.

Conversely, assume that every ideal of R is finitely generated. Consider an ascending chain of
ideals of R

I1 ⊆ I2 ⊆ I3 ⊆ · · · .

Construct I =
∪
k Ik and let x, y ∈ I. Then x ∈ Ii and y ∈ Ij for some i, j. Without loss of

generality we are free to take i ≤ j so that Ii ⊆ Ij and x, y ∈ Ij , which is an ideal in R and thus
closed under subtraction. From the definition it is clear that I absorbs elements of R. Hence I�R.

Thus I is finitely generated, I = (f1, . . . , fs). Then for every i ∈ {1, . . . , s} there exists Ni such
that fi ∈ INi

. Take now N = max(N1, . . . , Ns). Then fi ∈ IN for i ∈ {1, . . . , s} so that I ⊆ IN ,
i.e. I = IN . Hence IN = IN+1 = IN+2 = · · · and the ascending chain terminates.

Examples 2.18. A field k is Noetherian since, as we saw above; if I � k, then either I = (0) = {0}
or I = (1) = k.

The polynomial ring (in finitely many variables) k[x1, ..., xn] is Noetherian, which we shall see as
a consequence of Theorem 2.20.

A non-Noetherian ring may be realized by, for instance, taking a polynomial ring in infinitely many
variables. △

The theorem we shall state below is indispensable in the theory of Gröbner bases in that it, as
we shall see in further sections, guarantees that investigated ideals have a finite set of generators
which in turn guarantees that our algorithmic operations terminate after a finite number of steps.
First it is necessary to define some concepts in a polynomial ring.

Definition 2.19. Let R be a commutative ring and p(x) = p0 + p1x + . . . + pnx
n ∈ R[x]. We

define LT(p), the leading term of p to be the term of the form cxi for some non-zero c ∈ R and
maximal i, that is, LT(p) = pnx

n. c is said to be the leading coefficient of p, c = LC(p).
Furthermore we define deg(p) ∈ N to be the degree of a polynomial, the highest occurring power
of x so that deg(p) = n.

Remark. If R is a commutative ring that is an integral domain (that is, given xy = 0, either x = 0
or y = 0), then deg(pq) = deg(p) + deg(q) for non-zero p, q ∈ R[x].

Theorem 2.20. (Hilbert basis theorem) If the commutative ring R is Noetherian, then R[x] is
Noetherian.

Proof. Let J �R[x]. We will constructively show that J is finitely generated. Define

In = {r ∈ R | there exists a p ∈ J such that deg(p) = n and r = LC(p)} ∪ {0}.

Then for p, q ∈ J corresponding to some r, s ∈ In, respectively, as in the definition of In, deg(p−q) =
n if r ̸= s so that LC(p − q) = r − s and r − s ∈ In (if r = s, then r − s = 0 ∈ In), so that In
is closed under subtraction. Given some t ∈ R obviously deg(tp) = n and LC(tp) = tr so that In
absorbs elements of R. Hence In �R.

9
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Furthermore, for a p ∈ J corresponding to some r ∈ In, we have that deg(xp) = n + 1 and
LC(xp) = r so that r ∈ In+1. Hence In ⊆ In+1 and we have an ascending chain of ideals of R.
Since R is Noetherian, there exists N ∈ N such that In = IN for all n ≥ N and every ideal in the
chain is finitely generated, Ii = (ri1, . . . , riti).

Let now fij ∈ J be the polynomial corresponding to rij as in the definition of Ii (i.e. of degree i
and such that LC(fij) = rij) for each i ∈ {1, . . . , N} and j ∈ {1, . . . , ti}. Construct J ′ = (fij | i ∈
{1, . . . , N}, j ∈ {1, . . . , ti}) ⊆ J and let f ∈ J with deg(f) = n. We shall show that f ∈ J ′ by
induction over n.

For the base step, if f = 0 or n = 0, then f ∈ I0 and hence f ∈ J ′. For n > 0, assume that the
elements of J of degree < n are in J ′ and let r = LC(f). We have the following cases:

If n ≤ N , then the leading coefficient of f is in In and r can be written as r =
∑
j sjrnj for sj in

R. Then for g =
∑
j sjfnj ∈ J ′, we have deg(g) = n and LC(g) = r. We thus have deg(f − g) < n

and, since f − g ∈ J , by induction, f − g ∈ J ′ so that f ∈ J ′.

If n > N , then f ∈ In = IN so that r =
∑
j sjrNj for sj ∈ R. Construct g =

∑
j sjx

n−NfNj ∈ J ′.
Evidently, deg(g) = n−N+N = n and LC(g) = r so that deg(f−g) < n. By induction, f−g ∈ J ′

and thus f ∈ J ′. Hence J = J ′ and is finitely generated.

Corollary 2.21. The multivariate polynomial ring k[x1, . . . , xn] over a field k is Noetherian.

Proof. This follows from an easy induction over n using the Noetherianity of k and the fact that

k[x1, . . . , xn] = k[x1, . . . , xn−1][x].

2.3. Algebraic geometry and solution sets

The idea of representing the solutions of equations geometrically is common and essential in al-
most any application of mathematics. This idea is formalized properly by the concept of solution
sets, varieties, that exhibit geometrical properties of algebraic objects as well as radical of ideals
exhibiting algebraic properties of geometrical objects. The famous zero locus theorem of Hilbert,
the Nullstellensatz, captures this connection in a beautiful way. To understand the utility that the
essentially purely algebraic construction of Gröbner bases carries for geometrical purposes, we now
briefly introduce some of these concepts.

Definition 2.22. For a(n algebraically closed) field k and a set of polynomials F = {f1, ...} ⊆
k[x1, ..., xn], we define the variety of F by

Z(F ) = { p ∈ kn | f(p) = 0 ∀f ∈ F}.

Definition 2.23. For a subset V of kn, we define the vanishing ideal of V by

I(V ) = { f ∈ k[x1, ..., xn] | f(p) = 0 ∀p ∈ V }.

Definition 2.24. For any ideal I in a ring R, we define the radical of the ideal by
√
I = { r ∈ R | ∃n ∈ N : rn ∈ I}.

Theorem 2.25. (Hilbert Nullstellensatz ) For an algebraically closed field k and any proper ideal
I of k[x1, ..., xn], the following is true:

√
I = I(Z(I)).

10
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This well-known result was first shown (as one might guess) by Hilbert in 1890. Proofs of this
theorem can be found in any proper treatment on commutative algebra or algebraic geometry, for
instance in Atiyah’s and Macdonald’s Introduction to Commutative Algebra, [AM69]. We will not
make explicit use of this theorem, but include it because of its significance and as an indication of
how methods on ideals (such as Gröbner bases) can be related to other areas of mathematics.

Example 2.26. For the ideal I = (x3) in C[x], polynomials in the algebraically closed field C, we
have a very trivial variety Z(I) = {0}. The vanishing ideal of this variety is the ideal of polynomials
that vanish on 0. This is any polynomial without a constant term, meaning that I(Z(I)) = (x),
which is exactly the radical of I = (x3). △

Example 2.27. In the two-dimensional real plane a circle can be defined by the solutions to the
equation x2 + y2 = 1. An ellipse can similarly be described by the equation x2/3 + 3y2 = 1. The
circle and the ellipse intersect each other at(

±
√
3/2, ±1/2

)
∈ R2.

However, R is not algebraically closed, so we consider these objects as subsets of C. The real valued
solution points are shown in figure 1.

x

y

Figure 1: Intersection of circle and ellipse in R2

For an algebraic treatment we can associate the circle with the ideal I1 = (x2 + y2 − 1) and the
ellipse with I2 = (x2/3 + 3y2 − 1) and identify them with the varieties Z(I1) and Z(I2).

The intersection of two varieties is the variety of the union of the ideals,

Z(I1) ∩ Z(I2) = Z(I1 ∪ I2)

but in general, unions of ideals may not be ideals. However,

I1 ∪ I2 ⊆ I1 + I2 = {a+ b | a ∈ I1, b ∈ J2} = (x2 + y2 − 1,
1

3
x2 + 3y2 − 1)

and therefore Z(I1 ∪ I2) ⊇ Z(I1 + I2). Since any element of the intersection Z(I1)∩Z(I2) will be
in the variety Z(I1 + I2) of the sum, this implies that Z(I1 ∪ I2) = Z(I1 + I2).

Thus, the intersection points are described by the variety of the sum of the ideals:

Z(I1 ∪ I2) = Z(I1 + I2) =
{
p ∈ C2 | f(p) = 0 ∀f ∈ I1 + I2

}
11
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which gives us the following set of real valued solutions:{(
±
√
3/2, ±1/2

)
∈ R2

}
.

In section 3.4 we will show how to obtain this result by computing a Gröbner basis for the ideal
I1 + I2 = (x2 + y2 − 1, 1

3x
2 + 3y2 − 1). △
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3. Gröbner basics

Throughout this section, we will for the most part paraphrase the terminology and exposition
in [AL94], following the same steps in our proofs unless otherwise indicated. The remarks and
examples, however, mostly reflect the thoughts of the writers. The former are mostly things we
have picked up from different sources on our way and the latter constitute a mixed collection of
exercises and standard examples found in literature (with references) as well as our own examples.

3.1. Term orders, leading terms and division algorithm

The modern body of Gröbner theory consists of a set of computational tools and results that enables
explicit calculations of various algebraic objects. The central notion for this framework is that of
Noetherianity, which as previously mentioned is the property that guarantees the existence of a
finite generating set for an ideal. Gröbner bases are a particular kind of finite generating sets for
ideals in (Noetherian) polynomial rings, so this allows us in turn to introduce algorithmic methods
for finding these in a finite number of steps. The central aspects of this theoretical framework that
enables these constructive methods will be presented in this section.

Here we introduce some important definitions required to define Gröbner bases. Firstly, we recall
the concept of division in a polynomial ring k[x] over a field and then see how this definition can be
extended to the multivariate case. The following formulation is the long division of basic algebra:

Definition 3.1. Given f, g, h ∈ k[x], we say that f reduces to h by g or write f g−→ h if and
only if LT(g) divides LT(f) and

h = f − LT(f)

LT(g)
g.

If furthermore f is reduced by g in a number of steps, such as when f g−→ h
g−→ r, we write f g−→+ r.

Theorem 3.2. (Euclidean property of k[x]) For any f, g ∈ k[x] such that g ̸= 0, there exist unique
q, r ∈ k[x] such that f = qg + r with either r = 0 or deg(r) < deg(g).

Proof. Due to [DF04]. Assume f ̸= 0 (otherwise, q = r = 0) and let n = deg(f), m = deg(g). We
show existence of q and r by induction over n.

If n < m, let q = 0 and r = f . Assume thus that n ≥ m and let f g−→ f ′ so that

f ′ = f − LT(f)

LT(g)
g.

Then deg(f ′) < deg(f). By induction, there exist q′ and r′ such that f ′ = q′g + r′ and either
r′ = 0 or deg(r′) < deg(g). Defining r = r′ and

q = q′ +
LT(f)

LT(g)

we can write f = qg + r so that either r = 0 or deg(r) < deg(g).

Assume now that for f and g we can write f = q1g + r1 and f = q2g + r2 as above. Then
deg(r1) < deg(g) and deg(r2) < deg(g) so that deg(r1 − r2) = deg((q2 − q1)g) < deg(g). Since
deg((q2 − q1)g) = deg(q2 − q1) + deg(g) if the polynomials are non-zero (as remarked earlier, k is
an integral domain), we necessarily have q2 − q1 = 0 so that q1 = q2 and, consequently, r1 = r2 so
that the q and r are unique.

13
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Example 3.3. Let f = x3 + 2x2 + x and g = x + 1. We identify LT(f) = x3 and LT(g) = x. The
reduction can be done in two steps:

h1 = f − LT(f)

LT(g)
g = x3 + 2x2 + x− x3

x
(x+ 1) = x2 + x

h2 = h1 −
LT(h1)

LT(g)
g = x2 + x− x2

x
(x+ 1) = 0,

so that f g−→+ 0. △

For polynomial division to be applicable in a multivariate ring, we need a way to compare mono-
mials consisting of several indeterminates. This is formulated using the concept of term orders.
Henceforth we will denote our multivariate polynomial ring k[x1, . . . , xn] by A.

Definition 3.4. By a monomial or power product in A we refer to a product of the form
X = x

α1
1 · · ·xαn

n for some powers α1, . . . , αn ∈ N. A term in A is of the form cX with c ∈ k and
a monomial X. We shall denote the set of the power products of A by Tn.

Definition 3.5. A term order on Tn is a total order < on Tn (that is, given two monomials
X,Y ∈ Tn exactly one of the following holds: X < Y , X > Y or X = Y ) such that:

• 1 < X for all X ∈ Tn such that X ̸= 1.

• If X < Y , then ZX < ZY for all Z ∈ Tn.

Remark. For two terms P = cX,Q = dY , we say P < Q if X < Y with respect to the term order
< on Tn.

The following result connects the mechanism of multivariate term orders to the usual univariate
operations:

Lemma 3.6. Let < be a term order on Tn and X,Y ∈ Tn. If X divides Y , then X ≤ Y .

Proof. Since X divides Y , there exists Z ∈ Tn such that Y = XZ and from the term order
definition, Z ≥ 1. Then Y = XZ ≥ X, again from the definition.

Recall that for the univariate case, polynomial division returned as output a remainder r of strictly
lesser degree than that of g. To assure that reduction can be performed in a finite number of steps
we need to verify the nonexistence of infinite strictly descending chains of terms. Any total order
< on A that satisfies the two conditions in the definition is then a valid way of comparing power
products in A, as is seen from the following consequence of the Hilbert basis theorem in 2.2:

Theorem 3.7. Any term order on Tn is a well-ordering. That is, for a given term order < on Tn,
any collection of power products T ⊆ Tn has a minimal element X ∈ T such that for any Y ∈ T ,
X ≤ Y .

Proof. Assume to the contrary that there is no such minimal X. Then there exist power products
Xi ∈ Tn for i ∈ N such that

X1 > X2 > X3 > · · ·

and there exists a collection of ideals of A

(X1) ⊆ (X1, X2) ⊆ (X1, X2, X3) ⊆ · · · .

14
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We shall show that equality between two such consecutive ideals cannot hold. Assume that
(X1, . . . , Xn) = (X1, . . . , Xn, Xn+1). Then we can write

Xn+1 =

n∑
i=1

piXi

for polynomials pi ∈ A. Every summand is then of the form piXi where Xi divides every term in
piXi so that every term on the right-hand side is divisible by an Xi for some i ∈ {1, . . . , n}. Since
equality holds, Xn+1 must appear on the right-hand side and is thus divisible by some Xi. By
Lemma 3.6 above we then necessarily have Xi ≤ Xn+1 with n + 1 > i, which is a contradiction.
Hence we obtain the following strictly ascending chain of ideals of A

(X1) ⊊ (X1, X2) ⊊ (X1, X2, X3) ⊊ · · · ,

which contradicts the Noetherianity of A by the Hilbert basis theorem.

We shall now state some commonly used term orders on Tn. Let X = x
α1
1 x

α2
2 · · ·xαn

n and Y =

x
β1
1 x

β2
2 · · ·xβn

n for (α1, . . . , αn), (β1, . . . , βn) ∈ Nn.

Definition 3.8. The lexicographical (lex) term order on Tn, with x1 > x2 > · · · > xn is
defined as

X < Y ⇐⇒ αi < βi holds for the first 1 ≤ i ≤ n such that αi ̸= βi.

Example 3.9. Using lex and x1 > x2,

1 < x2 < x22 < x1 < x1x2 < x1x
2
2 < x21.

△

Definition 3.10. The degree lexicographical (deglex) term order on Tn with x1 > x2 >
· · · > xn is defined as

X < Y ⇐⇒

(
n∑
i=1

αi <
n∑
i=1

βi

)
or(

n∑
i=1

αi =
n∑
i=1

βi and X < Y with respect to lex x1 > x2 > · · · > xn

)
.

Example 3.11. Using deglex and x1 > x2,

1 < x2 < x1 < x22 < x1x2 < x21 < x32 < x31.

△

Definition 3.12. The degree reverse lexicographical (degrevlex) term order on Tn with
x1 > x2 > · · · > xn is defined as

X < Y ⇐⇒

(
n∑
i=1

αi <
n∑
i=1

βi

)
or(

n∑
i=1

αi =
n∑
i=1

βi and αi > βi holds for the first n ≥ i ≥ 1 such that αi ̸= βi

)
.

Example 3.13. Using degrevlex and x1 > x2 > x3, we have x21x2x3 < x1x
3
2. △

We now define analogues of the univariate definitions such as the leading term of a polynomial:

Definition 3.14. Let < be a term order on A and f ∈ A. We then define

15
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• LT(f): the leading term of f is a term of the form cX for some non-zero c ∈ k and X ∈ Tn

that is <-maximal among the power products appearing in f .

• LM(f): the leading monomial is the power product of the leading term of f , that is, X.

• LC(f): the leading coefficient of f is the coefficient of LT(f), that is, c.

• CT(f): the constant term of f is the coefficient of the power product 1, that is, CT(f) = d
for some d ∈ k (if 1 does not occur as power product in f , we let CT(f) = 0).

Example 3.15. Let f = 2x2 + 3xy2 + 5y3 + 1 ∈ Q[x, y]. Then, with lex and x > y, LT(f) = 2x2.
With lex and y > x, LT(f) = 5y3. With deglex and x > y, LT(f) = 3xy2. The constant term of
f is CT(f) = 1. △

We can now formulate the concepts of reduction and a division algorithm in A. Let < be a fixed
term order on the monomials of A.

Definition 3.16. Given f, g, h ∈ A, we say that f reduces to h by g or write f g−→ h if and only
if LT(g) divides some non-zero term X in f and

h = f − X

LT(g)
g.

Let furthermore F = {f1, . . . , fs} ⊂ A such that fi ̸= 0 for i ∈ {1, . . . , s}. We say that f reduces

to h modulo F or write f F−→+ h if and only if there exist a sequence i1, . . . , it ∈ {1, . . . , s} and
a sequence h1, . . . , ht−1 ∈ A such that

f
fi1−−→ h1

fi2−−→ h2
fi3−−→ · · ·

fit−1−−−→ ht−1

fit−−→ h.

Example 3.17. Let f = x2y + yz and G = {g1, g2, g3} with g1 = xy, g2 = y + z and g3 = z. Since

h1 = f − x
2
y

LT(g1)
g1 = x2y + yz − x

2
y

xy xy = yz

h2 = h1 − yz
LT(g2)

g2 = yz − yz
y (y + z) = −z2

h3 = h2 − −z2
LT(g3)

g3 = −z2 + z
2

LT(z)z = 0,

we can write f
g1−→ h1

g2−→ h2
g3−→ 0 or f G−→+ 0. △

Definition 3.18. A polynomial f ∈ A is said to be reduced with respect to G = {g1, . . . , gs} ⊂ A
if and only if f = 0 or if f is not reducible modulo G, that is, no term in f is divisible by LT(gi)
for g ∈ {1, . . . , s}.

We are now ready to formulate polynomial division in our setting, A:

Theorem 3.19. (Multivariate polynomial division algorithm) Given a polynomial f ∈ A and a
set of non-zero polynomials G = {g1, . . . , gs} ⊂ A, define the following algorithm:

1. If there exists i ∈ {1, . . . , s} such that LM(gi) divides LM(f), that is, if LT(f) = aLT(gi) for
some a, add the a corresponding to the minimal such i to the quotient qi and reiterate for

f − LT(f)

LT(gi)
gi = f − agi

2. If no such i exists, add LT(f) to the remainder r and reiterate for f − LT(f).
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This algorithm terminates in a finite number of steps and produces quotients q1, . . . , qs ∈ A and a
remainder r ∈ A that is reduced with respect to G so that

f = q1g1 + . . .+ qsgs + r and LM(f) = max

(
max
1≤i≤s

(LM(qi)LM(gi)),LM(r)

)
.

Proof. Label the polynomial at the start of the ith iteration of the algorithm by hi. Then LT(hi) >
LT(hi+1) and we obtain a descending chain of terms that terminates finitely by Theorem 3.7,
proving the first assertion.

Furthermore, for any such h, LM(h) ≤ LM(h1) = LM(f). In this iteration we will add − LT(h)
LT(gi)

gi

to h so that the leading term of h is cancelled and, consequently, add LT(h)
LT(gi)

to qi. Hence
LM(qi)LM(gi) ≤ LM(f).

From step 2 of the algorithm, it is clear that either r = 0 or no term in r is divisible by any LM(gi)
so that r is reduced with respect to G.

A natural question is that of ideal membership, that is, if a given f ∈ A is a member of some given
ideal I = (g1, . . . , gs)�A. If, following division of f by {g1, . . . , gs} the remainder r is zero, f can
be written as f =

∑
i qigi so that f ∈ I. However, the converse is not true in general: neither the

quotients qi nor the remainder r of a multivariate polynomial division are unique, as demonstrated
in the following simple example. This will be one of the main motivations for introducing the
concept of Gröbner bases in Section 3.2.

Example 3.20. Consider the ideal I = (f1, f2) = (x2 − x, x2). The GCD of f1 and f2 is x. Since
f2 − f1 = x, x is also a member of I. In fact, we see that I = (x). The fact that x is an element
of I cannot be derived via polynomial division of x by f1 and f2 since x is reduced with respect to
{f1, f2}. △

3.2. Gröbner bases

The following definition will allow us to more easily formulate some of the statements of this
section.

Definition 3.21. Let S ⊆ A. We define LT(S), the leading term ideal of S to be the ideal
generated by the leading terms of the elements of S so that

LT(S) = (LT(p) | p ∈ S).

We now have all the tools required to formulate the definition of a particularly “well-behaved” set
of generators of an ideal I that will allow us to algorithmically answer questions such as the one
regarding ideal membership. Firstly we show the equivalence of four statements to which we shall
adjoin one other later in this section.

Theorem 3.22. Let I be an ideal of A andG be a set of non-zero polynomialsG = {g1, . . . , gs} ⊆ I.
The following statements are equivalent:

(1) For all f ∈ I such that f ̸= 0, there exists i ∈ {1, . . . , s} such that LM(gi) divides LM(f).

(2) f ∈ I if and only if f G−→+ 0.

(3) f ∈ I if and only if f =
∑
i qigi with LM(f) = maxi(LM(qi)LM(gi)).

17
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(4) LT(G) = LT(I).

Proof. Assume (1) and let f ∈ I. Then f
G−→+ r for some r reduced with respect to G by the

division algorithm of Theorem 3.19 so that f − r ∈ I and f ∈ I if and only if r ∈ I. Hence if r = 0,
then f ∈ I. Conversely, assume that f ∈ I and r ̸= 0. Since r ∈ I, by (1) some LM(gi) divides
LM(r) which is a contradiction of r being reduced. This proves (1) ⇒ (2).

Assume (2) and let f ∈ I. Then f G−→+ 0 and by Theorem 3.19, which is a reduction, we have

LM(f) = max
1≤i≤s

(LM(qi)LM(gi)),

so that (2) ⇒ (3).

Assume (3) and let f ∈ I. Then, since f =
∑
i qigi,

LT(f) =
∑

LM(qi)LM(gi)=LM(f)

LT(qi)LT(gi).

Thus LT(f) ∈ LT(G) and since LT(I) is generated by the leading terms of the elements of I, we
have shown LT(G) ⊇ LT(I). The reverse inclusion is obvious. Hence (3) ⇒ (4).

Assume (4) and let f ∈ I so that LT(f) ∈ LT(I) = LT(G) and LT(f) =
∑
i hi LT(gi). Thus every

term on the right-hand side is divisible by some LM(gi), i ∈ {1, . . . , s}, so that LM(f) is divisible
by some LM(gi). Hence (4) ⇒ (1).

Definition 3.23. A subset of non-zero polynomials G = {g1, . . . , gs} ⊆ I satisfying any of the
equivalent conditions of Theorem 3.22 is said to be a gröbner basis of I.

Corollary 3.24. If G = {g1, . . . , gs} ⊆ I is a Gröbner basis of I, then I = (g1, . . . , gs).

Proof. The ⊇ statement follows from the fact that G is a subset of I. For the other inclusion,
f

G−→+ 0 if f ∈ I by Theorem 3.22 so that I ⊆ (g1, . . . , gs).

We see that a Gröbner basis G ⊆ I generates the ideal I. Condition (2) of Theorem 3.22 then
exactly answers the question of ideal membership discussed above. In fact, we can extend this
statement in the following way:

Theorem 3.25. Let G be a Gröbner basis. For all f ∈ A, the remainder r obtained as f G−→+ r,
where r is reduced with respect to G is unique.

Proof. Let f ∈ A and let f G−→+ r and f
G−→+ r′ using polynomial division for remainders r, r′

reduced with respect to G so that f − r, f − r′ ∈ I. Then (f − r′)− (f − r) = r− r′ ∈ I is reduced
with respect to G. Unless r − r′ = 0, this is a contradiction of statement (2) of Theorem 3.22.
Hence r = r′ and the remainder is unique.

Remark. In fact, the converse of the statement is true for a set G = {g1, . . . , gs} of non-zero
polynomials. Hence the property of the polynomial division remainder being unique can be taken as
another condition equivalent to G being a Gröbner basis and appended to the list in Theorem 3.22.
This is not necessary for our exposition. For a proof, see [AL94].

Having shown the beneficial properties of Gröbner bases, we establish existence:

Theorem 3.26. Any non-zero ideal I of A has a Gröbner basis.

Proof. Consider LT(I), the ideal generated by the leading terms of the elements of I.
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Let f ∈ LT(I). Then

f =
ℓ∑
i=1

cihiXi

for some ℓ ∈ N, some hi ∈ A and the leading terms ciXi of some polynomials in I. Since every
term on the right-hand side is divisible by an Xi, so is every term in f on the left-hand side.

By the Hilbert Basis Theorem (Theorem 2.20), LT(I) is finitely generated as an ideal of A, say
LT(I) = (f1, . . . , fn) for some n ∈ N and fi ∈ LT(I). Then every term in fi for i ∈ {1, . . . , n}
is divisible by some LT(gj), the leading term of some polynomial gj in I by the argument above.
Collecting these s leading terms and letting G = {g1, . . . , gs} we see that LT(G) = LT(I) so that
G is a Gröbner basis of I by Theorem 3.22.

3.3. Buchberger’s algorithm

In order to make use of the useful properties of Gröbner bases demonstrated in the previous section,
an algorithmic method of constructing a Gröbner basis given a set of generators of an ideal I is
needed. We begin by constructing a mechanism that accounts for cancellation of the leading terms
of two polynomials. This construction will turn out to have more important repercussions than
first may seem, as we shall see in Section 4.

Definition 3.27. Let f, g be two non-zero polynomials in A. We define L = LCM(LM(f),LM(g))
to be the least common multiple of the leading power products of f and g, respectively. The
s-polynomial of f and g is then defined as

S(f, g) =
L

LT(f)
f − L

LT(g)
g.

We now present another equivalent criterion for a subset G of I to be a Gröbner basis, given in
terms of the S-polynomials.

Theorem 3.28. (Buchberger’s criterion) A subset of non-zero polynomials G = {g1, . . . , gs} is a
Gröbner basis for the ideal it generates if and only if

S(gi, gj)
G−→+ 0 for all i ̸= j.

Lemma 3.29. Let {f1, . . . , fs} ⊂ A be a set of non-zero polynomials such that LM(fi) = X for
all i ∈ {1, . . . , s} and some X ∈ Tn. Construct for some coefficients ci ∈ k, i ∈ {1, . . . , s}, the
k-linear combination f =

∑
i cifi. If LM(f) < X, then f can be written as a k-linear combination

of S(fi, fj) for 1 ≤ i < j ≤ s.

Proof. Let LT(fi) = aiX for i ∈ {1, . . . , s}. We see that

S(fi, fj) =
X

aiX
fi −

X

ajX
fj =

1

ai
fi −

1

aj
fj .
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We can write

f =

s∑
i=1

cifi =

s∑
i=1

ciai
1

ai
fi =

s∑
i=1

 i∑
j=1

cjaj −
i−1∑
j=1

cjaj

 1

ai
fi =

=
s−1∑
i=1

 i∑
j=1

cjaj −
i−1∑
j=1

cjaj

( 1

ai
fi +

1

ai+1

fi+1 −
1

ai+1

fi+1

)+

 s∑
j=1

cjaj −
s−1∑
j=1

cjaj

 1

as
fs =

=
s−1∑
i=1

 i∑
j=1

cjaj

( 1

ai
fi −

1

ai+1

fi+1

)+ csas
1

as
fs +M,

where

M =

s−1∑
i=1

 i∑
j=1

cjaj

 1

ai+1

fi+1

−
s−1∑
i=1

i−1∑
j=1

cjaj

 1

ai
fi

 =

=

s−2∑
i=1

 i∑
j=0

cjaj

 1

ai+1

fi+1

+

s−1∑
j=1

cjaj

 1

as
fs −

s−1∑
i=1

i−1∑
j=0

cjaj

 1

ai
fi

 =

s−1∑
j=1

cjaj

 1

as
fs,

so that

f =

s−1∑
i=1

 i∑
j=1

cjaj

( 1

ai
fi −

1

ai+1

fi+1

)+

 s∑
j=1

cjaj

 1

as
fs =

s−1∑
i=1

 i∑
j=1

cjaj

S(fi, fi+1),

since the assumption was that c1a1 + . . .+ csas = 0.

We now prove Theorem 3.28:

Proof. Let G be a Gröbner basis of (g1, . . . , gs) = I. Then S(gi, gj) ∈ I for all i ̸= j so that

S(gi, gj)
G−→+ 0 by Theorem 3.22.

For the converse statement, assume that S(gi, gj)
G−→+ 0 for all i ̸= j and let f ∈ I. Among the

representations of f as f =
∑
i higi, choose one such that X = maxi(LM(hi)LM(gi)) is <-minimal

by Theorem 3.7. We show that condition (3) of Theorem 3.22 is satisfied.

If LM(f) = X, we are done. Otherwise LM(f) < X. Denote by S the set of indices i such that
LM(hi)LM(gi) = X and let LT(hi) = ciXi. Construct now g =

∑
i∈S ciXigi and let r = f − g.

Then LM(Xigi) = X for i ∈ S and LM(g) < X, fulfilling the conditions of Lemma 3.29 so that we
can express g as

g =
∑
i<j∈S

dijS(Xigi, Xjgj)

for some coefficients dij ∈ k. Explicitly, LCM(LM(Xigi),LM(Xjgj)) = X and

S(Xigi, Xjgj) =
X

LT(Xigi)
Xigi −

X

LT(Xjgj)
Xjgj =

X

LT(gi)
gi −

X

LT(gj)
gj =

X

Lij
S(gi, gj),

where Lij = LCM(LM(gi),LM(gj)). Since we assume S(gi, gj)
G−→+ 0 for i ̸= j, using the same

sequences in the reduction yields S(Xigi, Xjgj)
G−→+ 0 so that

S(Xigi, Xjgj) =
s∑

k=1

hijkgk
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where, by the division algorithm (Theorem 3.19),

max
1≤k≤s

(
LM(hijk)LM(gk)

)
= LM(S(Xigi, Xjgj)) < LCM(LM(Xigi),LM(Xjgj)) = X.

From this, it is clear that

f = g + r =
∑
i<j∈S

dijS(Xigi, Xjgj) +
∑
i

aigi =
∑
i<j∈S

dij
∑
k

hijkgk +
∑
i

aigi =
∑
i

bigi

gives a representation f =
∑
i bigi where LM(bi)LM(gi) < X for all i ∈ {1, . . . , s}, contradicting

the minimality of the representation chosen above. Therefore LM(f) = X and we are done.

From Theorem 3.28 an algorithm for computing a Gröbner basis given an initial set of polynomials
generating I can be naturally formulated.

Proposition 3.30. (Buchberger’s algorithm) Given a set F = {f1, . . . , fs} ⊂ A of non-zero
polynomials, let G = F and collect the pairs {f, g} for f, g ∈ G such that f ̸= g. Define the
following algorithm:

1. Remove a pair {f, g} from the set of pairs and let S(f, g) G−→+ h so that h is reduced with
respect to G

2. If h ̸= 0, add all pairs {u, h} for u ∈ G to the set of pairs, add h to G and reiterate.

This algorithm terminates in a finite number of steps and produces a Gröbner basis G for the ideal
I = (f1, . . . , fs).

Proof. Assume that the algorithm does not terminate. Then in the ith iteration the algorithm will
produce a set Gi+1 such that Gi ⊊ Gi+1 by adding to Gi an hi that is reduced with respect to Gi.
That is, no term in hi is divisible by any LT(gj) for j ∈ {1, . . . , si}. In particular, LT(hi) ̸∈ LT(Gi)
so that we obtain a strictly increasing chain of leading term ideals

LT(G1) ⊊ LT(G2) ⊊ LT(G3) ⊊ · · · ,

contradicting the Noetherianity of A by the Hilbert Basis Theorem (Theorem 2.20).

For any gi, gj ∈ G, S(gi, gj)
G−→+ 0 so that G = {g1, . . . , gt} is a Gröbner basis of (g1, . . . , gt).

Evidently, F ⊆ G so that (f1, . . . , fs) ⊆ (g1, . . . , gt). Any hi added to Gi in the ith iteration of
the algorithm is certainly in (f1, . . . , fs) so that I = (f1, . . . , fs) = (g1, . . . , gt) and G is a Gröbner
basis of I.

Example 3.31. We now return to the example 2.27 from section 2.3 with the circle and ellipse
described by the equations x2 + y2 = 1 and 1

3x
2 + 3y2 = 1. Consider the ideal (x2 + y2 − 1, 13x

2 +

3y2 − 1) under a lex ordering with x > y.

Let h1 = x2 + y2 − 1 and h2 = 1
3x

2 + 3y2 − 1 and G1 = {h1, h2}.

Construct S(h1, h2) = −8
3y

2+ 2
3 . Then S(h1, h2) is reduced with respect to G1. Set S(h1, h2) = h3

and let G2 = {h1, h2, h3}.

Construct S(h1, h3) = −2
3x

2 − 8
3y

4 + 8
3y

2. Then S(h1, h3)
G2−−→+ 0.

Construct S(h2, h3) = −2
9x

2 − 8y4 + 8
3y

2. Then S(h2, h3)
G2−−→+ 0.

Thus G2 is a Gröbner basis for the ideal. △
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3.4. Uniqueness, some examples and applications

Proposition 3.32. Let G = {g1, . . . , gs} be a Gröbner basis for an ideal I. If LM(g2) divides
LM(g1), then {g2, . . . , gs} is a Gröbner basis for I.

Proof. We use the first condition of Theorem 3.22. Let f ∈ I be a polynomial such that LM(g1)
divides LM(f). Then LM(g2) divides LM(f).

Definition 3.33. A Gröbner basis G = {g1, . . . , gs} is said to be minimal if LC(gi) = 1 for all i
and no LM(gi) divides LM(gj) for i ̸= j.

Remark. A minimal Gröbner basis is only minimal in the sense that no leading terms of basis
elements divide one another. A further restriction on a Gröbner basis yielding a generating set of
minimal cardinality will be given below as terming the Gröbner basis reduced.

The following lemma will be useful in showing the uniqueness of a certain type of Gröbner bases
to be defined shortly.

Lemma 3.34. If F = (f1, . . . , fs) and G = (g1, . . . , gt) are two minimal Gröbner bases of I, then
s = t and LT(fi) = LT(gi) after renumbering.

Proof. Since f1 ∈ I, there exists an i ∈ {1, . . . , t} such that LM(gi) divides LM(f1). Reorder G so
that i = 1. Since g1 ∈ I, there exists j ∈ {1, . . . , s} such that LM(fj) divides LM(g1). But then
LM(fj) divides LM(f1) and F is minimal, so j = 1 and LM(f1) = LM(g1).

Since f2 ∈ I, there exists i ∈ {1, . . . , t} such that LM(gi) divides LM(f2) and i ̸= 1 since F
is minimal. Reorder G so that i = 2. By the same reasoning as above, LM(f2) = LM(g2).
Continuing this process until all elements of F and G have been considered, we arrive at the
conclusion |F | = s = t = |G| and LT(fi) = LT(gi) after renumbering.

We can now formulate a restriction on a Gröbner basis for an ideal I so that I can be uniquely
described by a Gröbner basis of this type.

Definition 3.35. A Gröbner basis G = {g1, . . . , gs} is said to be reduced if LC(gi) = 1 and gi is
reduced with respect to G∖ {gi} for all i.

Remark. In particular, a reduced Gröbner basis is minimal.

What follows is a method for constructing a reduced Gröbner basis for an ideal, showing existence.

Proposition 3.36. Given a minimal Gröbner basis G = {g1, . . . , gs} of an ideal I, define the
following algorithm for i ∈ {1, . . . , s}:

1. Construct Hi = {h1, . . . , hi−1, gi+1, . . . , gs}

2. Obtain hi by gi
Hi−−→+ hi so that hi is reduced with respect to Hi.

This algorithm yields a reduced Gröbner basis H = {h1, . . . , hs} for I.

Proof. Since G was minimal, the leading term of every gi will be in the output of the reduction,
hi so that LM(hi) = LM(gi) and H is a minimal Gröbner basis by Theorem 3.22.

Furthermore, since hi is reduced with respect to Hi, no term in hi is divisible by any of the terms

{LM(h1), . . . ,LM(hi−1),LM(gi+1), . . . ,LM(gs)} = {LM(g1), . . . ,LM(gi−1),LM(gi+1), . . . ,LM(gs)}
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so that hi is indeed reduced with respect to G∖ {gi} and H is a reduced Gröbner basis of I.

Example 3.37. Returning to the circle and ellipse of the examples 2.27 and 3.31 we will now present
a reduction. Multiplying to get monic leading terms, set G3 = {x2+y2−1, x2+9y2−3, y2−1/4}.
Since LT(g1) = x2 divides LT(g2) = x2, we can discard the middle polynomial and set G4 =
{x2 + y2 − 1, y2 − 1

4}. This is a minimal Gröbner basis. Continuing our reduction,

x2 + y2 − 1
G4∖{h1}−−−−−−→+ x2 − 3

4
.

No further reductions can be made and we have the reduced Gröbner basis G = {g1, g2} with

g1 = y2 − 1/4

g2 = x2 − 3/4.

△

Theorem 3.38. (Buchberger) For a fixed term order < on Tn, every non-zero ideal I of A has a
unique reduced Gröbner basis with respect to <.

Proof. Assume that G and H are two reduced, and thus minimal, Gröbner bases of I. Then
|G| = |H| = s and we can assume LT(gi) = LT(hi), i ∈ {1, . . . , s}, by Lemma 3.34.

For such an i, assume that gi ̸= hi. Then gi−hi ∈ I and so there exists j such that LM(hj) divides
LM(gi−hi) (since H is a Gröbner basis of I), so that LM(hj) ≤ LM(gi−hi) by Lemma 3.6. Since
LM(gi − hi) < LM(hi), we can state that j ̸= i. Then LM(hj) = LM(gj) divides some term in hi
or gi, contradicting the reducedness of G and H. Hence gi = hi.

3.5. Another example: the elementary symmetric polynomials

A polynomial which is invariant under permutation of the variables is called symmetric. The
polynomial x2 + xy + y2 is an example of a symmetric polynomial in x and y. These polynomials
appear naturally in the study of roots to polynomial equations and in Galois theory. The theory
of symmetric polynomials is also deeply interconnected with other areas of mathematics, such as
representation theory and combinatorics. In some sense, the most simple symmetric polynomials
are the elementary symmetric polynomials, defined as follows.

Definition 3.39. The kth elementary symmetric polynomial in n variables is defined by

σk,n =
∑

1≤j1<...<jk≤n

xj1xj2 · · ·xjk .

Example 3.40. For one variable, n = 1, the elementary symmetric polynomials are

σ1,1 = x1.

For n = 2,
σ1,2 = x1 + x2
σ2,2 = x1x2.

For n = 3,
σ1,3 = x1 + x2 + x3
σ2,3 = x1x2 + x1x3 + x2x3
σ3,3 = x1x2x3.

△
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The symmetric polynomials in any commutative polynomial ring constitute a ring (see [BW93]
for reference) that is customarily denoted by R[x1, . . . , xn]

S . Clearly the elementary symmetric
polynomials all lie in this ring - in fact, every symmetric polynomial can be written as a polynomial
in the elementary symmetric polynomials. A well-known result called the fundamental theorem of
symmetric polynomials captures this fact.

Theorem 3.41. (Fundamental theorem of symmetric polynomials) For a commutative ring R,
the ring of symmetric polynomials in n variables is isomorphic to the ring of polynomials in the
elementary symmetric polynomials: R[x1, . . . , xn]

S ∼= R[y1, . . . , yn], where the isomorphism sends
any σj,n to yj . That is, any f ∈ R[x1, . . . , xn]

S can be written as f = g(σ1,n, . . . , σn,n) in a unique
way for a g ∈ R[y1, . . . , yn].

Proof. This can be shown with the theory of term orders, as is done in for example [BW93] or
[CLO07]. It can also be proven via Galois theory, for which we refer the reader to [DF04].

Let us now again consider the ring k[x1, ..., xn]. Since a Gröbner basis will give us computational
benefits and possibilites, we intend to present a Gröbner basis (for the lex ordering xn > xn−1 >
· · · > x1) for the ideal generated by the elementary symmetric polynomials, (σ1,n, . . . , σn,n).

Definition 3.42. We define the complete symmetric sums hd,m by

hd,m =
∑

a1+...+am=d

x
a1
1 · · ·xamm .

Definition 3.43. We define the gröbnerian symmetric sums gd,n by

gd,n = hd,n−d+1.

Examples 3.44. For one variable, n = 1, we have

g1,1 = x.

For n = 2, we have
g1,2 = x+ y

g2,2 = x2.

For n = 3, we have
g1,3 = x+ y + z

g2,3 = x2 + xy + y2

g3,3 = x3.

△

Proposition 3.45. The formula

σd,n + (−1)dgd,n +
d−1∑
k=1

(−1)kgk,nσd−k,n−k = 0 (1)

holds. This is proven by elementary inductive techniques in [MS03]. This formula can be considered
a late addition to the well-known and similar Newton-Girard identities (see [Mea92]).

Proposition 3.46. (g1,n, . . . , gn,n) = (σ1, . . . , σn).
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Proof. This proof is a slight simplification of a more general result for other families of symmetric
functions shown in [MS03].

First, we can rewrite (1) on the following form, with ck = (−1)k+1σd−k,n−k for k < d − 1 and
cd = (−1)d+1:

σd,n =
d∑
j=1

cjgj,n

and directly note that the inclusion (σ1,n, . . . , σn,n) ⊆ (g1, . . . , gn) holds.

Second, we will show the other inclusion by induction. For the base case, we note that g1 ∈ (g1) =
(σ1). Now assume that {g1, . . . , gj−1} ⊂ (σ1,n, . . . , σj−1,n).

Rearranging (1) it is clear that gj ∈ (g1, . . . , gj−1, σj,n) ⊆ (σ1,n, . . . , σj,n), proving the equality.

Corollary 3.47. Since LT(gk,n) = xkn−k+1, and in particular since LT(gk) does not divide LT(gj)
for j ̸= k, the set {gj,n} gives a Gröbner basis for the ideal generated by the elementary symmetric
polynomials. Since the gi are monic and no leading term of any gi divides any of the terms of
another, the basis is also reduced.
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4. Modules and Gröbner bases

We continue to follow the exposition and definitions of [AL94], unless otherwise specified. Some
steps in proofs have been elaborated upon for clarity.

4.1. Modules: some definitions

Modules were introduced by Emmy Noether as a common generalization of ideals and vector spaces
and are now one of the standard tools used in algebra. In this chapter we present the basic theory of
modules, many of these definitions closely following the ring properties treated in earlier sections.
In the following section we present a natural generalization of Gröbner theory to submodules of
modules over polynomial rings. This extension has become standard and can be used to prove
some previously non-constructive results in a constructive way.

Definition 4.1. Given a commutative ring R, an abelian group (M,+) and an operation R×M →
M , M is said to be an R-module if for all m,n ∈M and r, s ∈ R,

• r(m + n) = rm + rn

• (r + s)m = rm + sm

• (rs)m = r(sm)

• 1Rm = m.

Remark. If k is a field, a k-module is called a vector space.

Definition 4.2. A subset N ⊆M that is in itself an R-module is said to be a submodule of M ,
written N ≤ M . If furthermore every n ∈ N can be written as n = r1a1 + . . . + rtat for ri ∈ R,
the generating set {a1, . . . ,at} ⊆ N and i ∈ {1, . . . , t}, we say N is finitely generated. We
then write N = ⟨a1, . . . ,at⟩.

Definition 4.3. A module is said to be free if there exists a generating set or basis B ⊆M such
that every element m ∈M can be written as a finite sum

m =
s∑
i=1

ribi

in a unique way with coefficients ri ∈ R and basis elements bi ∈ B.

Example 4.4. The polynomial ring A is in itself an A-module with the usual multiplication between
elements of A. Considering A as an A-module in this sense, we will denote it by A1. The submod-
ules of A1 are then exactly the ideals of A, closed under multiplication by elements of A. A basis
for A1 is the set {1}, so A1 is free. △

Definition 4.5. A homomorphism (of R-modules) is a function ϕ : M → M ′ between two R-
modules M,M ′ such that:

• Additivity: for all m,n ∈M , ϕ(m + n) = ϕ(m) + ϕ(n).

• Compatibility: for all m ∈M and r ∈ R, rϕ(m) = ϕ(rm).
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A bijective homomorphism is said to be an isomorphism. Importantly, any homomorphism factors
through an isomorphism:

Theorem 4.6. (The first isomorphism theorem for modules) For any homomorphism ϕ :M → N
the kernel kerϕ is a submodule of M , the image imϕ is a submodule of N and we have an
isomorphism:

M/kerϕ ∼= imϕ.

We now introduce the analogue of Definition 2.16.

Definition 4.7. A module M is said to be noetherian if every submodule N ≤ M is finitely
generated or, equivalently, if for an ascending chain of submodules Ni ≤M

N1 ⊆ N2 ⊆ N3 ⊆ · · ·

there exists n such that for i ≥ n, Ni = Nn.

Let now A = k[x1, . . . , xn] and consider for s ∈ N the cartesian product As. We denote an element
m ∈ As by m = (m1, . . . ,ms) (this is not to be confused with the notation used for a finitely
generated ideal). Then As with the following notion of scalar multiplication A×As → As:

pm = p(m1, . . . ,ms) = (pm1, . . . , pms)

is a free A-module with the finite standard basis {ei}
s
i=1, where a basis element ei is zero at all

components except for being 1 at its ith component. Abusing terminology we sometimes call an
element m ∈ As a vector, despite As not being a vector space (since the ring of scalars k[x1, . . . , xn]
is not a field).

We observe that for a homomorphism between free A-modules, the map is defined by the images
of the standard basis vectors of As, that is, by ϕ(ei) ∈ At for i ∈ {1, . . . , s}. Therefore we can
express ϕ in terms of matrix multiplication by the matrix that we will also refer to as ϕ by abuse
of notation, ϕ : m 7→

(
ϕ(e1) · · · ϕ(es)

)
m = ϕm.

The Noetherian property of A as a ring allows us to show the following generalization of the Hilbert
basis theorem (Theorem 2.20):

Proposition 4.8. As is Noetherian.

Proof. Let M ≤ As. We show that M is finitely generated by induction on s.

If s = 1, then As = A1 and M � A. By Theorem 2.20, A is Noetherian as a ring and thus M is
finitely generated.

Assume for the inductive step that s > 1 and that the submodules of As−1 are finitely generated.
Then

I = {a ∈ A | a is the first coordinate of some m ∈M}

is an ideal of A, since M is a submodule of As, and is finitely generated by the Hilbert basis
theorem so that I = ⟨a1, . . . , at⟩. Associate to each ai its element mi ∈ M as in the definition of
I.

Let now
M ′ = {(b2, . . . , bm) | (0, b2, . . . , bm) ∈M} .

Evidently M ′ ≤ As−1 and is thus by induction finitely generated, M ′ = ⟨n′
1, . . . ,n

′
ℓ⟩. For i ∈

{1, . . . , ℓ}, let ni = (0, n′i,1, . . . , n
′
i,s−1).
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For m ∈ M , we have that m1 =
∑
i riai for some ri ∈ A and i ∈ {1, . . . , t}. Furthermore, let

m′ = m −
∑
i rimi. Then m′ ∈M and m′

1 = 0, so that m′ =
∑
i pini. Hence

m =
t∑
i=1

rimi +
ℓ∑
i=1

pini,

so that M = ⟨m1, . . . ,mt,n1, . . . ,nℓ⟩ and is finitely generated.

Proposition 4.9. Given a finitely generated A-module M , there exist s ∈ N and a submodule
N ≤ As such that

M ∼= As/N.

In particular, M is Noetherian.

Proof. Let M be an A-module and {mi}
s
i=1 ⊆M . Then the following map is a homomorphism:

ϕ : As → M

(a1, . . . , as) 7→
s∑
i=1

aimi

In particular, if {mi} is chosen to be a generating set for M , ϕ is surjective. The conclusion follows
from Theorem 4.6.

The second assertion follows from the fact that if K ≤ M ∼= As/N , then K ∼= L/N for some
L ≤ As. By Theorem 4.8, L is finitely generated and hence so is L/N , so that every submodule of
M is finitely generated.

Definition 4.10. If M is an A-module such that M ∼= As/N as in Proposition 4.9, then As/N is
said to be the presentation of M .

Example 4.11. Consider the ground field k as an A-module with the following scalar multiplication:

A× k → k
(p, r) 7→ CT(p)r.

In order to present k as an A-module, we construct a surjective homomorphism ϕ : A → k such
that 1 7→ 1 and xi 7→ 0. Then kerϕ = ⟨x1, . . . , xn⟩. Then, by the isomorphism theorem 4.6 we
obtain k ∼= A/⟨x1, . . . , xn⟩. △

Proposition 4.9 allows us to describe any finitely generated A-module in terms of the quotient of a
free module with some submodule of said free module. This, together with the above mentioned fact
that homomorphisms between free A-modules are easily described will allow for the computation of
free resolutions in Section 4.3 and the formulation of methods for explicit computations of objects
such as the set of homomorphisms Hom between two arbitrary A-modules in Sections 4.5 and 4.6.

4.2. Gröbner formulation in As

This section defines the machinery which will enable us to obtain a Gröbner basis theory with the
theory presented in Section 3 obtained as a special case. To this end we require some definitions
to be made so as to have meaningful analogues of concepts such as divisibility. For results that
are straightforward analogues of their A1 counterparts we omit proofs and refer to the original
result proved in Section 3, replacing arguments using the Hilbert basis theorem (Theorem 2.20)
with Proposition 4.8.
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Definition 4.12. A term in As is a vector of the type X = cXei for a coefficient c ∈ k, some
power product X ∈ Tn and a basis vector ei ∈ As, i ∈ {1, . . . , s}. If c = 1 we say that X is a
monomial in As. For two terms X = cXei,Y = dY ej we say that X divides Y if and only if
i = j and X divides Y as a monomial in A. We define Y/X = (d/c)(Y/X).

We now need a way to compare two vector monomials. To this end we extend the definition of
term orders to As and state the term order most often used in this setting. As in the case of s = 1,
any term order on the monomials of As satisfying the following definition will be a well-ordering (a
direct analogue of Theorem 3.7). Abusing notation, we will denote a generic term order defined on
As as < for simplicity, distinguishing it from the term order < defined on A only when necessary.

Definition 4.13. A term order < on the monomials of As is a total order < that satisfies for
all monomials X,Y ∈ As:

• X < ZX for all power products Z ̸= 1 in A

• If X < Y, then ZX < ZY for all power products Z in A.

Definition 4.14. The term over position (TOP) term order on the monomials of As with
e1 < e2 < · · · < es is defined as follows: for monomials X = Xei, Y = Y ej in As and a term
order < defined on A, we have that

X < Y ⇐⇒ (X < Y ) or (X = Y and i < j) .

In other words, this term order compares two vector terms by their A-monomials and breaks a tie
by comparing indices of their respective basis vectors.

Example 4.15. With TOP lex, x1 > x2 and e1 < e2, we have

e1 < e2 < x2e1 < x2e2 < x1e1 < x1e2.

△

The following definitions echo their counterparts in A:

Definitions 4.16. Given a term order < on the monomials of As and a vector f ∈ As, we define
the following:

• LT(f) = aX is the leading term of f

• LM(f) = X is the leading monomial of f

• LC(f) = a is the leading coefficient of f

• For two monomials X = Xei in As, Y = Y ej , we define the least common multiple

LCM(X,Y) =

{
0 if i ̸= j

LCM(X,Y )ei if i = j

• Given a submodule M ≤ As, LT(M) = ⟨LT(m) |m ∈ M⟩ ≤ As is the leading term
module of M .

Example 4.17. Let f = (2x + y, 3x) ∈ A2 with TOP lex, x > y and e1 < e2. Then LT(f) = 3xe2,
LM(f) = xe2 and LC(f) = 3. Furthermore, the leading term module is given by LT({f}) =
⟨(0, 3x)⟩. △
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Proposition 4.18. The division algorithm in As mirrors the single-dimension case of generalized
polynomial division exactly in that, given f and a set F = {f1, . . . , ft} ⊆ As, one obtains quotients
q1, . . . , qt ∈ A and a remainder r ∈ As which is reduced with respect to F . One can thus write

f = q1f1 + . . .+ qsfs + r.

Before moving on to the definition of Gröbner bases and its application for more general purposes
in Section 4.3 we consider the analogue of a particular aspect of the conventional theory - the
S-polynomials - which, as we shall see, play a particular role in the module theory.

Definition 4.19. Given a Gröbner basis G = {g1, . . . ,gt} of some submodule M ≤ As, assuming
that LC(gi) = 1 and letting LT(gi) = Xi for i ∈ {1, . . . , t}, let Xij = LCM(LM(gi),LM(gj)) and
define

S(gi,gj) =
Xij

Xi

gi −
Xij

Xj

gj .

We can finally define the following, noting that the Buchberger algorithm given in Proposition 3.30
is completely equivalent,

Definition 4.20. A gröbner basis for the submodule M ≤ As is a set of non-zero vectors
G = {g1, . . . ,gt} ⊆M satisfying any of the following equivalent conditions:

1. For all f ∈M such that f ̸= 0, there exists i ∈ {1, . . . , t} such that LM(gi) divides LM(f).

2. f ∈M if and only if f G−→+ 0.

3. If f ∈M , then f =
∑
i higi with LM(f) = maxi(LM(hi)LM(gi)).

4. LT(G) = LT(M).

5. S(gi,gj)
G−→+ 0 for all i ̸= j.

Remark. Continuing the terminology from the case of A, calling this object a Gröbner basis has
nothing to do with the notion of basis of a free module as in Definition 4.3.

The uniqueness of remainder after polynomial division with G as well as the results on existence
and uniqueness of Gröbner bases also carry over from A1.

4.3. Syzygies

In Section 4.1 we saw that an arbitrary finitely generated A-module M could be presented by
letting M be the image of a homomorphism from a free module. We now define a particularly useful
concept that will allow us to describe kernels of such homomorphisms, crucial for computations in
modules:

Definition 4.21. Let {f1, . . . , fs} ⊆ Am. Then constructing a homomorphism

ϕ : As → Am

(a1, . . . , as) 7→
s∑
i=1

aifi,

the kernel of ϕ is a submodule of As and is said to be the syzygy module of
(
f1 · · · fs

)
∈ Am×s,

Syz(f1, . . . , fs) = kerϕ ≤ As. We refer to the elements of the syzygy module as syzygies.
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This is exactly the set of polynomial solutions (h1, . . . , hs) ∈ As to the following homogeneous
linear equation with coefficients in Am:

f1h1 + . . .+ fshs = 0,

i.e. the set of linear dependences of the generators of M .

Remark. A result that is not used in this text but is nevertheless of interest is that given two
ordered generating sets F and G of the same A-module M , there exist free A-modules L,L′ such
that Syz(F ) ⊕ L ∼= Syz(G) ⊕ L′. The full statement and proof can be found in, for instance,
[CLO05].

Example 4.22. The ideal (x, y) of A = k[x, y] can be regarded as a submodule ⟨x, y⟩ of A1. For the
generators x, y the linear combination ax + by is zero if a = cy and b = −cx for some element c.
Thus (y,−x) ∈ A2 is an element of the syzygy module Syz(x, y). In fact, it is a generating element,
so that Syz(x, y) = ⟨(y,−x)⟩. △

We shall now see the role that S-polynomials play in terms of syzygies the Gröbner basis G:

Proposition 4.23. Let G = {g1, . . . ,gt} ⊆ Am be a Gröbner basis of a submodule M ≤ Am.
By condition (5) of Definition 4.16, S(gi,gj)

G−→+ 0 for i ̸= j, so that S(gi,gj) =
∑
k hijkgk for

hijk ∈ A and k ∈ {1, . . . , t}. Define

sij =
Xij

Xi

ei −
Xij

Xj

ej − (hij1, . . . , hijt) for 1 ≤ i < j ≤ t.

Then H = {sij | 1 ≤ i < j ≤ t} ⊆ At is a generating set for the syzygy module Syz(G).

Lemma 4.24. Let X1, . . . ,Xs be monomials in Am so that Xi = Xiej for some j ∈ {1, . . . ,m}.
Then

C =

{
Cij =

Xij

Xi

ei −
Xij

Xj

ej

∣∣∣∣ i, j ∈ {1, . . . , s}
}

is a generating set for the syzygy module Syz(X1, . . . ,Xs).

Proof. First, for i ̸= j, note that
(
X1 · · · Xs

)
Cij = 0, mirroring the property of the original

S-polynomials in A so that ⟨C⟩ ⊆ Syz(X1, . . . ,Xs).

Let h = (h1, . . . , hs) ∈ Syz(X1, . . . ,Xs) ≤ As. We write the ith polynomial component of the
syzygy h as the sum of its terms hi =

∑
j djX

′
j .

Then (
X1 · · · Xs

)
h = h1X1 + . . .+ hsXs = b1Y1 + . . .+ bwYw = 0,

where the Yi are all of the w distinct monomials appearing on the left-hand side. Note that bi = 0
for all i. Fix such a Yi for some i ∈ {1, . . . , w}.

Then

biYi =
∑
j

d′jX
′
jXj =

∑
j

d′j

Yi = 0,

where the index j ranges over some Ji ⊆ {1, . . . , s} such that max(Ji) = ti. Every summand
above is of the form d′jX

′
jXj = d′jYi, where d′jX

′
j is a term in some component of the syzygy h.

Note that since we had written the kth syzygy component hk as a sum of distinct terms, it can
contribute at most one term d′X ′ such that X ′Xk = Yi to the sum biYi. Furthermore, every term
d′X ′ of every syzygy component h occurs in some term bi′Yi

′ for i′ ∈ {1, . . . , w}.
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Return to our previously fixed i ∈ {1, . . . , w}. Define a vector hi so that its mth component is
either him = d′mX

′
m if hm contributes to the sum biYi or him = 0 otherwise. Then

(
X1 · · · Xs

)
hi = biYi = 0 and h =

w∑
i=1

hi.

Using a technique from the proof of Lemma 3.29,

hi =
∑
j∈Ji

d′jX
′
jej =

∑
j∈Ji

d′j
Yi

Xj

ej =

=
∑

j,j
′∈Ji∖{ti}

[(∑
k

d′
)

Yi

Xjj
′

(
Xjj

′

Xj

ej −
Xjj

′

Xj
′
ej′

)]
+

∑
j∈Ji

d′j

 Yi

Xti

eti =

=
∑

j,j
′∈Ji∖{ti}

pjj′Cjj
′ ,

so that h =
∑
i h

i =
∑
j,j

′ qjj′Cjj
′ and ⟨C⟩ ⊇ Syz(X1, . . . ,Xs), completing the proof.

We now prove Proposition 4.23.

Proof. We can assume without loss of generality that LC(gi) = 1 for all i ∈ {1, . . . , t}.

Firstly,

(
g1 · · · gt

)
sij = −hij1g1 + . . .+

(
Xij

Xi

− hiji

)
gi + . . .+

(
−

Xij

Xj

− hijj

)
gj + . . .− hijtgt =

= S(gi,gj)−
t∑

k=1

hijkgk = 0,

so that ⟨H⟩ ⊆ Syz(g1, . . . ,gt).

Assume, in order to get a contradiction, that U = Syz(g1, . . . ,gt)∖ ⟨H⟩ ≠ ∅. Select then a u ∈ U
such that X = maxi (LM(ui)LM(gi)) = maxi (LM(ui)Xi) is <-minimal by the term order being a
well-ordering.

Denote by S the set of indices i such that LM(ui)Xi = X. Define now u′i for each i ∈ {1, . . . , t} as
u′i = ui if i ̸∈ S and u′i = ui−LT(ui) = ui− c′iX

′
i for i ∈ S. Since u ∈ Syz(G), we necessarily have∑

i∈S c
′
iX

′
iXi = 0 so that

∑
i∈S c

′
iX

′
iei is a syzygy of the monomials {Xi | i ∈ S}. By Lemma 4.24

we can then write ∑
i∈S

c′iX
′
iei =

∑
i,j∈S

pij

(
Xij

Xi

ei −
Xij

Xj

ej

)
for some polynomials pij ∈ A. By observing the left-hand side, we see that every coordinate of the
vector contains a single term. We can then choose pij = dijX/Xij for some constant dij ∈ k since
X = X ′

iXi. Rewriting u, we have

(u1, . . . , ut) =
∑
i∈S

c′iX
′
iei + (u′1, . . . , u

′
t) =

∑
i,j∈S

pij

(
Xij

Xi

ei −
Xij

Xj

ej

)
+ (u′1, . . . , u

′
t) =

=
∑
i,j∈S

pijsij +
∑
i,j∈S

pij(hij1, . . . , hijt) + (u′1, . . . , u
′
t) =

∑
i,j∈S

pijsij + (v1, . . . , vt).

32



Sarlin, Zotov: On Gröbner bases 4. Modules and Gröbner bases

By the assumption, u, sij ∈ Syz(G) and u ̸∈ ⟨H⟩, so that v = (v1, . . . , vt) ∈ Syz(G) ∖ ⟨H⟩. We
will obtain a contradiction by showing that maxk (LM(vk)Xk) < X. For each k ∈ {1, . . . , t},

LM(vk)Xk = LM

u′k + ∑
i,j∈S

pijhijk

Xk ≤ max

(
LM(u′k),max

i,j∈S

(
LM(pij)LM(hijk)

))
Xk.

Firstly, LM(u′k)Xk < X by construction. Secondly, with pij = dijX/Xij as noted above, we have
for i, j ∈ S that

LM(pij)LM(hijk)Xk =
X
Xij

LM(hijk)Xk =
X
Xij

LM(hijk)LM(gk) ≤

≤ X
Xij

LM(S(gi,gj)) <
X
Xij

LCM(LM(gi),LM(gj)) = X,

so that LM(vk)Xk < X. Hence maxk(LM(vk)Xk) < X, contradicting the minimality of the choice
of X above. Thus ⟨H⟩ ⊇ Syz(g1, . . . ,gt).

We now have a tangible way of describing the syzygy module Syz(G) of a Gröbner basis G by
computing the sij through reduction of the S-polynomials. One could then imagine computing the
second syzygy module of G, that is, the relations between the generators of Syz(G), necessitated
in the computations of free resolutions in Section 4.4. To apply the theory above, one would first
have to compute a Gröbner basis of Syz(G) applying Buchberger’s algorithm. There is in fact a
more refined method which we shall state below. First, we define a technical result that will also
be used in the proof of the Hilbert syzygy theorem of Section 4.4.

Proposition 4.25. Given a set of non-zero vectors G = {g1, . . . ,gt} ⊆ Am and a term order <
on the monomials of Am, the following is a term order on At:

Xei ≺ Y ej ⇐⇒
(
LM(Xgi) < LM(Y gj)

)
or
(
LM(Xgi) = LM(Y gj) and j < i

)
.

This is said to be the term order ≺ on At induced by G.

Proof. Let Xei and Y ej be two monomials in At. We verify that ≺ satisfies the conditions of
Definition 4.13.

If i ̸= j, then since < is a total order,(
LM(Xgi) = LM(Y gj) and (i < j or j < i)

)
or(

LM(Xgi) < LM(Y gj) or LM(Y gj) < LM(Xgi)
)

so that either Xei ≺ Y ej or Y ej ≺ Xei. If i = j and X ̸= Y , then either LM(Xgi) < LM(Y gi)
or LM(Y gi) < LM(Xgi) since the elements of G are non-zero. Hence ≺ is a total order.

Let Z ∈ Tn such that Z ̸= 1. Then LM(Xgi) < Z LM(Xgj) = LM(ZXgj), so that Xei ≺ ZXei.

Assume now that Xei ≺ Y ej and let Z ∈ Tn. We wish to show ZXei ≺ ZY ej .

If LM(Xgi) < LM(Y gj), then LM(ZXgi) = Z LM(Xgi) < Z LM(Y gj) = LM(ZY ej) and ZXei ≺
ZY ej .

Otherwise LM(Xgi) = LM(Y gj) and j < i, so that LM(ZXgi) = Z LM(Xgi) = Z LM(Y gj) =
LM(ZY gi) with j < i, so that ZXei ≺ ZY ej .

The following result is due to Schreyer ([CLO05]). For clarity, we will write LM when comparing
monomials using the term order on A, LM< when comparing using a term order < in Am and
LM≺ when using the induced order ≺ on the monomials of At. We shall return to this notation in
later proofs that require paying particular attention to the term orders involved.
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Theorem 4.26. (Schreyer) Given a Gröbner basis G = {g1, . . . ,gt} ⊆ Am, the set H = {sij | 1 ≤
i < j ≤ t} is a Gröbner basis for Syz(G) with respect to the term order ≺ on At induced by G.

Proof. Assume that LC<(gj) = 1 for all j ∈ {1, . . . , t}. We first prove that the leading monomial
of sij with respect to ≺ is LM≺(sij) = (Xij/Xi)ei for 1 ≤ i < j ≤ t. Firstly,

LM<

(
Xij

Xi

gi

)
= LM<

(
Xij

Xj

gj

)
= Xij so that

Xij

Xj

ej ≺
Xij

Xi

ei since i < j.

Consider now a monomial in (hij1, . . . , hijt) of the form Xeℓ. Then from the definition of G being a
Gröbner basis, maxk

(
LM(hijk)LM<(gk)

)
= LM<(S(gi,gj)) so that LM<(Xgℓ) ≤ LM<(S(gi,gj)).

Then
LM<(Xgℓ) ≤ LM<(S(gi,gj)) < Xij = LM<

(
Xij

Xi

gi

)
and Xeℓ ≺

Xij

Xi

ei.

Hence LM≺(sij) = (Xij/Xi)ei.

Let now s ∈ Syz(G) ≤ At. We wish to show that H satisfies condition 1 of Theorem 4.20, i.e. that
there exist i, j ∈ {1, . . . , t} such that LM≺(sij) divides LM≺(s).

Write s =
∑
k pkek for polynomials pk ∈ A and let LT(pk) = ckYk. Then for the leading monomial

of s with respect to ≺, we have LM≺(s) = Yiei for an i ∈ {1, . . . , t}. Fix this i and let Si ⊆ {1, . . . , t}
be the set of indices k such that LM<(Ykgk) = LM<(Yigi). Then for all k ∈ Si, k ≥ i from the
definition of ≺.

Since s is a syzygy of G, we have
(
g1 · · · gt

)
s = 0 and the coefficient of every term on the

left-hand side is 0. In particular, the coefficient of LM<(Yigi) is 0, so that the construction
s′ =

∑
k∈Si

ckYkek is a syzygy of LT<(g1), . . . ,LT<(gt), that is,
(
LT<(g1) · · · LT<(gt)

)
s′ = 0.

Then by Lemma 4.24, the syzygy s′ is in the module generated by C so that

s′ =
∑

k,k
′∈Si

pkk′

(
Xkk

′

Xk

ek −
Xkk

′

Xk
′
ek′
)

for polynomials pkk′ ∈ A. Since LM≺(s
′) = LM≺(s) = Yiei and k > i for k ∈ Si ∖ {i}, we have

that
ciYiei = LT≺(s

′) =
∑

k∈Si∖{i}
LM(pik)Xik/Xk=Yi

LT(pik)
Xik

Xi

ei,

so that there exists an index j ∈ Si ∖ {i} such that (Xij/Xi)ei = LM≺(sij) divides the leading
term of the syzygy LM≺(s

′) = LM≺(s
′). Hence H is a Gröbner basis of Syz(G).

We now move on to some computations in module theory that will make use of the above results.

4.4. Free resolutions and the Hilbert syzygy theorem

For the rest of the text, we will be dealing with sequences of module homomorphisms. We introduce
the common compact way of writing down such information in homological algebra:

Definition 4.27. Let M i be A-modules. A (possibly infinite) sequence M• of A-module homo-
morphisms ϕi

M0 M1 · · · M i · · · Mnϕ0 ϕ1 ϕi−1 ϕi ϕn−1
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is said to be exact at position i if imϕi−1 = kerϕi. If M• is exact at all i ∈ {1, . . . , n − 1}, it
is said to be an exact sequence.

Example 4.28. The statement that the sequence

0 M M ′ϕ

is exact is equivalent to stating that ϕ : M → M ′ is injective, since exactness means im 0 = 0 =
kerϕ. Similarly, ψ :M →M ′ is surjective if and only if the sequence

M M ′ 0
ψ

is exact since exactness means imψ = ker 0 =M ′. △

Recall from Lemma 4.9 that an arbitrary finitely generated A-module M taken as the image of a
homomorphism ϕ0 has a presentation, i.e. we have M ∼= As0/M0 for a s0 ∈ N and some submodule
M0 ≤ As0 , the kernel of ϕ0, i.e. the syzygy module of the generators of M . This corresponds to
the exact sequence

0 →M0
ι0−→ As0

ϕ0−→M → 0,

where ι0 is the inclusion map. We can then find an analogous presentation for M0 as a quotient
of some free module As1 with some submodule M1 (the second-order syzygy module, i.e. the
relations between the generators of the first syzygy module), etc. Repeating this process we
obtain a succession of presentations of modules and composing appropriate homomorphisms we
can construct the following diagram:

0 0

M1

· · · As2 As1 As0 M 0.

M2 M0

0 0 0 0

Taking the horizontal sequence of maps, we see that we have in a sense decomposed (resolved) M
by the free modules Asi .

Definition 4.29. An exact sequence M• of the form

· · · As2 As1 As0 M 0

for an A-module M and free A-modules Asi is said to be a free resolution of M . If furthermore
M• is finite and for all i ≥ n, Asi = 0, it is said to be of finite length n.

Example 4.30. Consider Example 4.11 for n = 2 with A = k[x, y]. By Lemma 4.24 we can see that
the first syzygy module is given by

Syz(kerϕ) = Syz(x, y) =
⟨
xy

x
e1 −

xy

y
e2

⟩
= ⟨(y,−x)⟩.
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This can be reached by a homomorphism ofA1 and its kernel, the second syzygy module Syz((y,−x)),
is trivial. Thus the following finite free resolution is obtained:

0 A1 A2 A1 k 0
F1 F2 ϕ

with the maps given by

F1 =

(
−y
x

)
, F2 =

(
x y

)
.

△

Example 4.31. Consider Example 4.11 with n = 3. We obtain the resolution

0 A1 A3 A3 A1 k 0
F1 F2 F3 ϕ

where the maps are given by

F1 =

 z
−y
x

, F2 =

−y −z 0
x 0 −z
0 x y

, F3 =
(
x y z

)
.

△

Example 4.32. In a similar vein, consider the ideal of symmetric polynomials, ⟨σ1, σ2, σ3⟩ in A =
k[x, y, z] as defined in 3.5. We obtain a free resolution of the form

0 A1 A3 A3 ⟨σ1, σ2, σ3⟩ 0.
B1 B2

with

B1 =

 z3

−y2 − yz − z2

x+ y + z

, B2 =

 0 x+ y + z y2 + yz + z2

−x− y − z −xz − yz − z2 −y2z − yz2

xy + xz + yz xz2 + yz2 y2z2

.
Disregarding the sign of the middle row, the 1-by-3 matrix B1 contains exactly the Gröbner basis
for the ideal as presented in 3.5. △

Remark. The curious reader will probably notice from the examples above that the dimensions of
the free modules in the resolution of k for the polynomial ring of n variables bear resemblance to
the (n + 1)th row of Pascal’s triangle. Indeed, this is not a coincidence but rather a consequence
of deeper results on Hilbert functions, Betti numbers and Euler characteristics. Further exposition
is beyond the scope of this text and can be found in, for example, [Eis05].

For the example with symmetric polynomials, the observation is related to the algebraic indepen-
dence of the polynomials and the fundamental theorem of symmetric polynomials 3.41. Again,
this topic is beyond the scope of this text. A detailed presentation can be found in [CLO07].

We now stand ready to formulate a fundamental result in commutative algebra. Using the Gröbner
basis machinery developed in this section we will be able to give a constructive proof of this result
for the case of A-modules.

Theorem 4.33. (Hilbert syzygy theorem) Every finitely generated A-module has a free resolution
of length ≤ n.
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Remark. Free resolutions of A-modules are not unique, nor are the dimensions of the free modules
involved. One invariant however is the alternating sum of these dimensions (this is formulated
using the theory of Hilbert functions in, for instance, [CLO05]). The proof of the Hilbert syzygy
theorem will nevertheless yield a constructive method of computing a resolution of length ≤ n.
This length is termed the global dimension of A, a homological invariant of the polynomial ring
itself.

In order to prove Theorem 4.33, we will require the following technical result making use of the term
order ≺ described in Proposition 4.25. We will once again use the notation for leading monomials
defined before Theorem 4.26.

Lemma 4.34. Let G = {g1 . . . ,gt} be the Gröbner basis of a submodule of Am with respect to
a term order <. Arrange the elements of G so that whenever the leading terms LT<(gi) = cXek
and LT<(gj) = dY eℓ have the same basis vector, i.e. if k = ℓ and i < j, then X >lex Y with
respect to the lex order on A with x1 > · · · > xn. Then the following holds:

1. If the variables x1, . . . , xm for m ∈ {1, . . . , n − 1} do not appear in some LM<(gj) for j ∈
{1, . . . , t}, then the variables x1, . . . , xm+1 do not appear in LM≺(sjz) for z ∈ {j + 1, . . . , t}.
Consequently, if x1, . . . , xm do not appear in any LM<(gj), then x1, . . . , xm+1 do not appear
in any LM≺(sjz) for 1 ≤ j < z ≤ t.

2. x1 does not appear in any LM≺(sjz) for 1 ≤ j < z ≤ t.

Proof. Let i, j ∈ {1, . . . , t} such that i < j. If LM<(gi) and LM<(gj) have different basis vectors,
then Xij = sij = 0 so that no variables appear in sij . Assume thus that LM<(gi) = Xieℓ and
LM<(gj) = Xjeℓ for some ℓ ∈ {1, . . . ,m}.

From the first part of the proof of Theorem 4.26, we have LM≺(sij) = (Xij/Xi)ei = (Xij/Xi)ei.
Assume now that x1, . . . , xm do not appear in Xi. Since i < j, we have Xi >lex Xj by the
arrangement of the elements of G, so that the variables x1, . . . , xm do not appear in Xj and the
power of xm+1 in Xi is equal to or larger than the power of xm+1 in Xj by Definition 3.8. Then
the power of xm+1 in Xij is the largest of these two powers and hence x1, . . . , xm+1 do not appear
in Xij/Xi, nor in (Xij/Xi)ei = LM≺(sij).

Thus if the variables x1, . . . , xm do not appear in any LM<(gi) for i ∈ {1, . . . , s}, the variables
x1, . . . , xm+1 do not appear in any LM≺(sij) for 1 ≤ i < j ≤ t.

We now wish to show the last statement. Since i < j, we have that Xi >lex Xj , so that the power
of x1 in Xi is equal to or larger than the power of x1 in Xj . Then the power of x1 appearing in
Xij is the largest of these two powers, so that x1 does not appear in LM≺(sij).

We now give the proof of Theorem 4.33:

Proof. Let M ∼= As0/M0 be a presentation of the (finitely generated) A-module M . If M0 = {0},
the resolution is trivial. Otherwise, a Gröbner basis of M0 exists with respect to some term order
< on the monomials of As0 so we can write M0 = ⟨G⟩ = ⟨g1, . . . ,gt⟩, letting said Gröbner basis be
the generating set of M0. Arranging the elements of G according to Lemma 4.34, let i ∈ {0, . . . , n}
be such that x1, . . . , xi do not appear in any LM<(gj) for j ∈ {1, . . . , t}. Then either i = n or
i < n.

If i = n, none of the variables appear in any LM<(gj). Then LT<(gj) = aeℓ for some coefficient
a ∈ k and ℓ ∈ {1, . . . , s0} so that the leading term module LT<(G) is generated by the basis vectors
eℓ appearing in the leading terms of the elements of G and is thus free. Let M ′ be the free module
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generated by the basis vectors that do not generate LT<(G) and construct the homomorphism

π : M ′ → As0/M0
∼= M

f 7→ f +M0.

We wish to show that π is a bijection. Let f be such that f ∈ M0 and f ∈ M ′, so that f ∈ kerπ.
Then LM<(f) is divisible by some LM<(gj) since G is a Gröbner basis of M0. Since f ∈ M ′, it
consists of terms that do not feature the basis vectors appearing in the leading terms of the gj so
that f = 0, kerπ = {0} and π is injective.

For all f ∈ As0 , we have that f reduces as f G−→+ r by G for a unique remainder r (again since G is
a Gröbner basis of M0), so that f− r ∈M0 and f+M0 = r+M0. Since r is reduced with respect
to G, no term in r is divisible by any LM<(gj), that is, r does not contain the basis vectors which
appear in the leading monomials LM<(gj). Hence r ∈M ′ and π is surjective. By the isomorphism
theorem, M ′ ∼= As0/M0

∼=M and M is free, terminating the exact sequence.

If i < n, construct the jth step of the following free resolution

Asj Asj−1 · · · As1 As0 M 0
ϕj ϕj−1 ϕ2 ϕ1 ϕ0

as follows:

Let < be a monomial order on Asj and let Gj be a Gröbner basis of kerϕj ≤ Asj . Arrange the
elements of Gj according to Lemma 4.34 and let sj+1 be the number of basis elements sj+1 = |Gj |.
Construct ϕj+1 as the customary projective homomorphism from the free module Asj+1 onto kerϕj .

By Lemma 4.34 and the assumption that the variables x1, . . . , xi do not appear in the leading
monomials of the elements of the Gröbner basis of M0, i.e. the LM<(gj), we have that x1, . . . , xi+1

do not appear in the leading monomials LM≺(sij) of the Gröbner basis of Syz(G) with respect to
the term order ≺ induced by G. Furthermore, regardless if x1 appears or does not appear in some
LM<(gj), then x1 does not appear in any leading monomial of the Gröbner basis of Syz(G).

Hence we can apply Lemma 4.34 repeatedly so that no variables appear in the leading monomials
of the generators of kerϕn−i, reducing the resolution of kerϕn−i to the case above, yielding that

Asn−i/ kerϕn−i ∼= imϕn−i

is a free module. Then replacing Asn−i with Asn−i/ kerϕn−i at index n − i in the sequence
terminates the resolution.

Remark. Computing the free resolution of an A-module M by applying Lemma 4.34 and using the
induced Schreyer orders ≺ at every step as in the proof of Theorem 4.33, one algorithmically arrives
at a sequence of length ≤ n. However, this process is computationally very cumbersome since a
comparison of two terms at the ith step using ≺i recursively requires the previous i−1 term orders
and Gröbner bases for comparisons in the free modules above. This algrotihmically naïve approach
is therefore typically avoided as there exist refined, substantially more efficient algorithms which,
for instance, omit terms in the module elements which are not used during computation and utilise
deeper theory such as that of Schreyer frames. The details of such implementations are beyond
the scope of this text. An example of current research in the field can be found in [EMSS15].

Example 4.35. (Exercise 3.10.1 in Adams & Loustaunau, [AL94]) We calculate a free resolution
for the module generated by(

x, y, z
)
,
(
y, x, z

)
,
(
y, z, x

)
,
(
x, z, y

)
,
(
y, x− z, z

)
,
(
y, z, x− z

)
∈ Q[x, y, z]3

for the lex term order with TOP.
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Implementing the above algorithms in sagemath,we find a free resolution:

0 A1 A4 A6 M 0
B1 B2

We verify this calculation with macaulay2.The intermediate mapsB1 : A1 → A4 andB2 : A4 → A6

are given by the matrices

B1 =


−z

−y + z
x− z
0

 , B2 =



−x+ z 0 −z −yz − z2

y − z x− 2z y − z −x2 + y2 + yz + z2

−y + z −x+ 2z −y + z −z2

x− z 0 z z2

0 −x+ z −y + z x2 + xz − y2 − yz
0 x− z y − z 0

 .

It is readily verified that B2B1 = 0 so that imB1 ⊆ kerB2. For the other inclusion, using the
methods outlined in sections 4.2 and 4.3 we can compute the syzygy module of the columns of B2,
i.e. kerB2 and see that its generator is the column vector of B1. Thus imB1 = kerB2. △

Example 4.36. (Example from page 253 of Cox, Little & O’Shea, [CLO05]) We calculate a free
resolution for the ideal

M = ⟨yz − xw, y3 − x2z, xz2 − y2w, z3 − yw2⟩ � k[x, y, z, w] = A

with degrevlex.

Calculations with macaulay2 as described above give the following free resolution:

0 A1 A4 A4 M 0
B1 B2

The intermediate maps are given by:

B1 =


w
−z
−y
x

 , B2 =


−y2 −xz −yw −z2
z w 0 0
x y −z −w
0 0 x y

 .

△

4.5. The Hom module

We are now interested in the explicit computation of two particular objects in the setting of A-
modules. The first one, Hom, is presented here. The other is covered in 4.7. These objects from
homological algebra cannot be given a proper theoretical treatment in this text. Such an exposition
can be found in [Wei94].

Definition 4.37. Let M,N be A-modules. Then we define Hom(M,N) to be the set of A-module
homomorphisms ϕ : M → N . Hom(M,N) is in particular an A-module under addition of homo-
morphisms (ϕ+ ψ)(m) = ϕ(m) + ψ(m) and the following multiplication by elements a ∈ A:

(aϕ)(m) = a(ϕ(m)) = ϕ(am).
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For two free A-modules As, At we can associate the matrix of a homomorphism ϕ : As → At with
the vector in Ast consisting of the concatenated columns of the matrix ϕ such that Hom(As, At) ∼=
Ast. This will enable us to use explicit methods in 4.6.

The following result from homological algebra is useful:

Proposition 4.38. Given A-modules Mi, P and A-module homomorphisms ϕ, ψ satisfying the
exact sequence

M1 M2 M3 0
ϕ ψ

the following sequence is exact:

0 Hom(M3, P ) Hom(M2, P ) Hom(M1, P )
◦ψ ◦ϕ

If the module P is free, the following sequence is also exact:

Hom(P,M1) Hom(P,M2) Hom(P,M3) 0
ϕ◦ ψ◦

Remark. These properties can be referred to by saying that Hom is a left-exact functor. Further-
more, the only statement in the second sequence that requires P to be free is that ψ◦ is surjective
– this statement is in fact equivalent to the definition of P being a projective module. The Quillen-
Suslin theorem states that every finitely generated projective module over a polynomial ring is a
free module, so in our scenario we will not discuss projective modules further. We refer to [Lan02]
for details on these properties and a proof of the mentioned theorem.

Proof. See [AL94].

By Lemma 4.9, we have M ∼= As/L and N ∼= At/K for some s, t ∈ N, L ≤ As and K ≤ At. Taking
one step in the free resolutions of M and N , respectively, we have the exact sequences

As1 As M 0Γ π and At1 At N 0∆ π
′

,

where Γ and ∆ are projections of the basis vectors of their respective domains onto the generating
sets of L and K and π and π′ are the ordinary projections of basis vectors onto the generating sets
of M and N .

Using Proposition 4.38 we thus obtain three exact sequences:

0 Hom(M,N) Hom(As, N) Hom(As1 , N)

Hom(As, At1) Hom(As, At) Hom(As, N) 0

Hom(As1 , At1) Hom(As1 , At) Hom(As1 , N) 0.

◦π ◦Γ

∆◦ π
′
◦

∆◦ π
′
◦

Since composition with Γ also gives rise to a homomorphism Hom(As, At) → Hom(As1 , At) and
since (π′ ◦ f) ◦ Γ = π′ ◦ (f ◦ Γ), we can arrange the sequences in the following commutative diagram
with the diagonal map φ = ◦Γ ◦ π′

◦:
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0 0

0 Hom(M,N) Hom(As, N) Hom(As1 , N)

Hom(As, At) Hom(As1 , At)

Hom(As, At1) Hom(As1 , At1)

◦π ◦Γ

◦Γ

π
′
◦

φ
π
′
◦

∆◦ ∆◦

Denote the kernel of ◦Γ in Hom(As, N) by K. From the isomorphism theorem for modules, it can
be identified that:

Hom(M,N) ∼= K

Hom(As, N) ∼= Hom(As, At)/ im(∆◦)

Hom(As1 , N) ∼= Hom(As1 , At)/ im(∆◦)

From the exactness it is seen that π′
◦ is surjective and therefore K is exactly the image of kerφ

under π′
◦. The isomorphism theorem again gives that K ∼= kerφ/ kerπ′

◦ = kerφ/ im∆◦, and thus
Hom(M,N) ∼= kerφ/ im∆◦. This is a quotient of two submodules of Hom modules, isomorphic to
two submodules of two free A-modules (since Hom(Ai, Aj) ∼= Aij , as discussed above) and can as
such be computed in a straightforward way, as we shall see in the following section.

4.6. Explicit calculation of Hom

To make use of Gröbner methods, we will now follow the theory of the previous section with
explicit methods and calculations of the associated matrices. This section roughly follows the
reasoning sketched in [AL94], filling in the omitted details in the reasoning and correcting some
minor inconsistencies.

The lemmas of this section deal with the associated matrices of maps discussed in Section 4.5. The
proofs of these results are technical and will be omitted. The interested reader can find these in
[AL94].

Lemma 4.39. For a map ρ : Aℓt1 → Aℓt associated with Sℓ, as above for ρ = δ and ℓ = s, we have
that

Sℓ =
ℓ⊕
i=1

∆,

where ⊕ denotes the block sum of matrices obtained by concatenation along the diagonal.

Hence we have, with ⟨T ⟩ denoting the submodule generated by the column vectors of a matrix
T ∈ Ax×y,

Hom(As, N) ∼= Hom(As, At)/ im(∆◦) ∼= Ast/⟨Ss⟩
Hom(As1 , N) ∼= Hom(As1 , At)/ im(∆◦) ∼= As1t/⟨Ss1⟩.

Then the map ◦Γ : Hom(As, N) → Hom(As1 , N) induces a map γ : Ast/⟨Ss⟩ → As1t/⟨Ss1⟩ and we
have the following result:
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Proposition 4.40. The map γ above is defined by

γ : Ast/⟨Ss⟩ → As1t/⟨Ss1⟩
m + ⟨Ss⟩ 7→ Tm + ⟨Ss1⟩,

where
T = t(Γ⊗ It) ∈ As1t×st,

It denotes the identity matrix of At×t and ⊗ denotes the tensor product, i.e. replacing the i, jth
element γij of Γ by γijIt.

We now state a result on presentations of quotient modules.

Proposition 4.41. Given submodules M,N ≤ Am such that N ⊂ M , M = ⟨f1, . . . , fs⟩ and
N = ⟨g1, . . . ,gt⟩, define the following A-module homomorphism:

ϕ : As → M/N
ei 7→ fi +N i ∈ {1, . . . , s}.

Let furthermore H =
(
f1 · · · fs g1 · · · gt

)
∈ Am×(s+t) and Syz(H) = ⟨p1, . . . ,pr⟩ ≤ As+t.

Denoting by hi ∈ As the vector containing the first s coordinates of pi for i ∈ {1, . . . , r}, we have
that

kerϕ = ⟨h1, . . . ,hr⟩.

Proof. See [AL94].

Construct the homomorphism in Proposition 4.41 for our scenario:

γ′ : Ast → As1t/⟨Ss1⟩
m 7→ Tm + ⟨Ss1⟩,

where T is the matrix from the definition of γ and U =
(
u1 · · · uu

)
∈ Ast×u for some u ∈ N is

the matrix such that ⟨U⟩ = ker(γ′) ≤ Ast. Thus γ′ = π ◦ T , summarized in the diagrams below:

Ast As1t

Ast/⟨Ss⟩ As1t/⟨Ss1⟩

T

π
γ
′

π

γ

m Tm

m + ⟨Ss⟩ Tm + ⟨Ss1⟩.

T

π
γ
′

π

γ

Thus by our previous results

Hom(M,N) ∼= ker ◦Γ ∼= ker γ ∼= ker γ′/⟨Ss⟩ ∼= ⟨U⟩/⟨Ss⟩.

Applying Proposition 4.41 again construct a homomorphism

ξ : Au → ⟨U⟩/⟨Ss⟩
ei 7→ ui + ⟨Ss⟩ i ∈ {1, . . . , u},

so that
Hom(M,N) ∼= ⟨U⟩/⟨Ss⟩ ∼= Au/ ker ξ,

where ker ξ is obtained as described in Proposition 4.41. This is the desired presentation of
Hom(M,N). We summarize the steps of our computation below.

Summary 4.42. Let M ∼= As/L and N ∼= At/K be A-modules. Then, with the notation used
above, Hom(M,N) is computed as follows:
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1. Construct the matrices Γ and ∆ from the generating sets of L and K, respectively.

2. Compute T = t(Γ⊗ It).

3. Compute the matrix U as ker γ′ using the theorem above.

4. Compute ker ξ. We now have a presentation of Hom(M,N) as Au/ ker ξ.

Example 4.43. We now show calculations of Hom between two modules as indicated in example
3.9.6 of [AL94] using the degrevlex order, following the procedure of Summary 4.42.

Consider the module M generated by the columns of the matrix

F =

xy y 0 yz

xz x x3 − x2z x2

yz y x2y − xyz xy


and the module N generated by the columns of

G =

(
x2 x2 x2z

y2 yz xy2 + yz2

)
.

We calculate the first maps of their respective free resolutions to

∆ =

 xy

−xy + yz − z2

−y + z

, Γ =


−1 −z −xz
x+ z z2 0
0 −1 −x− z

−1 x− z x2

.

The values of the constants s, s1, t, t1 are thus 4, 3, 3, 1.

The tensor product T = t(Γ⊗ It) is easily written as

−1 0 0 x+ z 0 0 0 0 0 −1 0 0
0 −1 0 0 x+ z 0 0 0 0 0 −1 0
0 0 −1 0 0 x+ z 0 0 0 0 0 −1

−z 0 0 z2 0 0 −1 0 0 x− z 0 0

0 −z 0 0 z2 0 0 −1 0 0 x− z 0

0 0 −z 0 0 z2 0 0 −1 0 0 x− z

−xz 0 0 0 0 0 −x− z 0 0 x2 0 0

0 −xz 0 0 0 0 0 −x− z 0 0 x2 0

0 0 −xz 0 0 0 0 0 −x− z 0 0 x2


.

For the use of the lemma, we construct Ss1 =
s1⊕
i=1

∆ and H =
(
TSs1

)
. Here, r = 10.

The syzygy matrix of H is calculated, and by taking the r = 10 first rows we obtain U as
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U =



x 0 0 −1 0 0 y 0 0 0

0 x 0 0 −1 0 −y yz − z2 0 0
0 0 x 0 0 −1 0 −y + z 0 0
1 0 0 0 0 0 0 −y −xy 0

0 1 0 0 0 0 0 y xy − yz + z2 0
0 0 1 0 0 0 0 0 y − z 0
0 0 0 x 0 0 0 0 0 0

0 0 0 0 x 0 yz − z2 0 0 0
0 0 0 0 0 x −y + z 0 0 0
z 0 0 1 0 0 −y −yz 0 −xy
0 z 0 0 1 0 y yz 0 xy − yz + z2

0 0 z 0 0 1 0 0 0 y − z



.

Here the number of columns is u = 10. We construct Ss =
s⊕
i=1

∆ and I =
(
USs

)
.

Constructing the syzygy matrix of this and Gröbner reducing the columns we obtain

V =



−y 0 yz 0

y 0 −z2 0
0 0 −y + z 0
0 −y 0 yz

0 y 0 −z2
0 0 0 −y + z
0 −1 0 −x+ z
−1 0 −x+ z 0


which is the sought presentation matrix for the module Hom(M,N). This result differs slightly
from the one obtained in [AL94] due to the different term order used. △

4.7. Calculations of Ext

Having the tools to describe Hom between two A-modules, we turn our attention to a related
functor that plays a fundamental role in homological algebra, namely Ext. It is an example of
a so-called derived functor. For two A-modules, Exti at an index i can be computed using the
methods of Section 4.6.

Definition 4.44. Let M,N be A-modules and the following be a free resolution of M :

· · · Asi+1 Asi Asi−1 · · · As1 As0 M0 0
Γi+2 Γi+1 Γi Γi−1 Γ2 Γ1 .

Construct the following sequence of Hom modules at index i:

· · · Hom(Asi+1 , N) Hom(Asi , N) Hom(Asi−1 , N) · · · Hom(As0 , N) 0
◦Γi+1 ◦Γi ◦Γi−1 ◦Γ1 .

We then define Exti(M,N) = ker (◦Γi+1) / im (◦Γi).

Remark. From the homological definition, Ext0(M,N) = Hom(M,N). Furthermore, since Ext
is the quotient of two A-modules, it is an A-module and in particular retains the abelian group
structure.
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Computing explicit presentations of the objects in the Hom sequence by the method of Section 4.6
we obtain

· · · Aui+1/Li+1 Aui/Li Aui−1/Li−1 · · ·
Ti+1 Ti .

and can then calculate ker (◦Γi+1) by Proposition 4.41.

Example 4.45. Let A = k[x, y, z] and consider the A-modules

I = ⟨x, y, z⟩
J = ⟨xyz, xy + xz + yz, x+ y + z⟩
L = ⟨−x2 + x, y2 + z2, z3⟩

and let M = A1 ⊕ I and N = A3/(J ⊕ I ⊕ L).

A free resolution for M can be calculated as

0 A1 A3 A4 M 00 g1 g2

with the maps

g1 =

 z
−y
x

, g2 =


0 0 0
−y −z 0
x 0 −z
0 x y

 .

Applying Hom(−, N), this gives a sequence

0 Hom(A1, N) Hom(A3, N) Hom(A4, N) 0.◦g1 ◦g2

The maps G1 : A3 → A9 and G2 : A12 → A9 induced by ◦g1 : Hom(A3, N) → Hom(A1, N) and
◦g2 : Hom(A4, N) → Hom(A3, N), respectively, as homomorphisms between free A-modules are as
follows:

G1 =

−z 0 0 y 0 0 y + z 0 0
0 0 0 0 0 0 0 0 0
0 0 −z 0 0 y 0 0 −x



G2 =



0 0 0 −y 0 0 −y − z 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −y 0 0 x 0 0 0
0 0 0 −z 0 0 0 0 0 −y − z 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −z 0 0 0 0 0 x
0 0 0 0 0 0 −z 0 0 y 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −z 0 0 y


.

By matrix multiplication we can verify that all compositions are zero.
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Further calculations yield that Ext1 and Ext2 have the presentation matrices

z y x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 z y x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 z y x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 z y x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 z y x 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 z y x 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 z y x 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 z y x 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 z y x


and z y x 0 0 0 0 0 0

0 0 0 z y x 0 0 0
0 0 0 0 0 0 z y x

.
These matrices can be conveniently written as E9 and E3 for

Ej =

j⊕
k=1

(
z y x

)
so that

Ext1(M,N) = A9/⟨E9⟩ = A9/ ⟨{all variables in all coordinates}⟩

and
Ext2(M,N) = A3/⟨E3⟩ = A3/ ⟨{all variables in all coordinates}⟩ .

In essence, we have taken the respective ambient free modules of the Ext groups and “killed” every
variable x, y, z. These quotient modules behave as cartesian products of copies of the underlying
field k and since the scalar multiplication with a p ∈ A can be replaced by multiplication with
CT(p) ∈ k, they are in fact isomorphic to the vector spaces k9 and k3. △
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5. Coda

The original theory of Gröbner bases for ideals in polynomial rings over a ground field has become
an indispensable set of tools for many ordinary algebraic problems. Many of the leading computer
algebra systems, including mathematica,sagemath,macaulay2 and many others incorporate im-
plementations of Gröbner methods.

As indicated in section 4, the central concepts can be straightforwardly restated in the more
general context of modules over the polynomial ring. Further generalizations to different algebraic
structures are possible. For instance, analogues of Gröbner bases can be introduced in settings
where the ground ring is not necessarily a field (see [AL94]) and in settings of differential rings (see
[Man91]). Even for non-commutative scenarios such as in the theory of so-called towers of HNN
extensions of free groups, analogues of Gröbner bases has been defined (see [BV06]).

The computational properties of the calculation and usage of Gröbner bases are a subject of their
own. Significant refinements of the original Buchberger’s algorithm treated in Section 3.3 can be
introduced using the syzygy theory defined in Section 4.3 as is done in [AL94]. Current work on
computations in module theory (such as computing resolutions) making use of induced Schreyer
orders (Theorem 4.26) include [EMSS15].

Extrapolating from the success that the theory of Gröbner bases has celebrated since its inception
more than half a century ago, it is not controversial to predict an innumerable variety of applications
and generalizations to come in the near future.
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